Skip to main content
Log in

Peccei-Quinn NMSSM in the light of 125 GeV Higgs

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the phenomenology of the Peccei-Quinn invariant extension of the next-to-minimal supersymmetric standard model (NMSSM) in view of the recent discovery of a 125 GeV Higgs boson. The minimal model having no quadratic and cubic terms of the NMSSM singlet field predicts a light singlino-like lightest supersymmetric particle (LSP). The model is strongly constrained by the Higgs invisible decay and the dark matter characteristic of the LSP, while some constraints can be relaxed by assuming that the saxion, the CP-even companion of the axion in the Peccei-Quinn sector, causes a late-time entropy production diluting the thermal LSP density. The collider signal of the model contains multi-jet and h/W/Z plus missing energy, which can be discovered in the early stage of the 14 TeV LHC running.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3125] [INSPIRE].

    Article  ADS  Google Scholar 

  2. J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Chun, J.E. Kim and H.P. Nilles, A natural solution of the μ problem with a composite axion in the hidden sector, Nucl. Phys. B 370 (1992) 105 [INSPIRE].

    Article  ADS  Google Scholar 

  4. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. K.S. Jeong, Y. Shoji and M. Yamaguchi, Peccei-Quinn invariant extension of the NMSSM, JHEP 04 (2012) 022 [arXiv:1112.1014] [INSPIRE].

    Article  ADS  Google Scholar 

  6. K.S. Jeong, Y. Shoji and M. Yamaguchi, Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM, JHEP 09 (2012) 007 [arXiv:1205.2486] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.E. Kim, H.P. Nilles and M.-S. Seo, Singlet superfield extension of the minimal supersymmetric standard model with Peccei-Quinn symmetry and a light pseudoscalar Higgs boson at the LHC, Mod. Phys. Lett. A 27 (2012) 1250166 [arXiv:1201.6547] [INSPIRE].

    ADS  Google Scholar 

  8. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  9. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  10. ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  11. CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  12. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  13. U. Ellwanger, G. Espitalier-Noel and C. Hugonie, Naturalness and fine tuning in the NMSSM: implications of early LHC results, JHEP 09 (2011) 105 [arXiv:1107.2472] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G.G. Ross, K. Schmidt-Hoberg and F. Staub, The generalised NMSSM at one loop: fine tuning and phenomenology, JHEP 08 (2012) 074 [arXiv:1205.1509] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C. Panagiotakopoulos and A. Pilaftsis, Higgs scalars in the minimal nonminimal supersymmetric standard model, Phys. Rev. D 63 (2001) 055003 [hep-ph/0008268] [INSPIRE].

    ADS  Google Scholar 

  16. A. Dedes, C. Hugonie, S. Moretti and K. Tamvakis, Phenomenology of a new minimal supersymmetric extension of the standard model, Phys. Rev. D 63 (2001) 055009 [hep-ph/0009125] [INSPIRE].

    ADS  Google Scholar 

  17. A. Delgado, C. Kolda, J.P. Olson and A. de la Puente, Solving the Little Hierarchy Problem with a Singlet and Explicit μ Terms, Phys. Rev. Lett. 105 (2010) 091802 [arXiv:1005.1282] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Delgado, C. Kolda and A. de la Puente, Solving the hierarchy problem with a light singlet and supersymmetric mass terms, Phys. Lett. B 710 (2012) 460 [arXiv:1111.4008] [INSPIRE].

    ADS  Google Scholar 

  19. J. Romao, Spontaneous CP-violation in SUSY models: a no go theorem, Phys. Lett. B 173 (1986) 309 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. Y. Kanehata, T. Kobayashi, Y. Konishi, O. Seto and T. Shimomura, Constraints from unrealistic vacua in the next-to-minimal supersymmetric standard model, Prog. Theor. Phys. 126 (2011) 1051 [arXiv:1103.5109] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. T. Kobayashi, T. Shimomura and T. Takahashi, Constraining the Higgs sector from false vacua in the next-to-minimal supersymmetric standard model, Phys. Rev. D 86 (2012) 015029 [arXiv:1203.4328] [INSPIRE].

    ADS  Google Scholar 

  22. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

    Article  ADS  Google Scholar 

  23. U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].

    Article  ADS  Google Scholar 

  24. U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].

    Article  Google Scholar 

  26. U. Ellwanger and C. Hugonie, NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Das, U. Ellwanger and A.M. Teixeira, NMSDECAY: A Fortran Code for Supersymmetric Particle Decays in the Next-to-Minimal Supersymmetric Standard Model, Comput. Phys. Commun. 183 (2012) 774 [arXiv:1106.5633] [INSPIRE].

    Article  ADS  Google Scholar 

  28. CMS collaboration, S. Chatrchyan et al., Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].

    Article  ADS  Google Scholar 

  29. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb −1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, arXiv:1208.0949 [INSPIRE].

  30. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. K. Choi and H.P. Nilles, The gaugino code, JHEP 04 (2007) 006 [hep-ph/0702146] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Asano and T. Higaki, Natural supersymmetric spectrum in mirage mediation, Phys. Rev. D 86 (2012) 035020 [arXiv:1204.0508] [INSPIRE].

    ADS  Google Scholar 

  34. Particle Data Group collaboration, K. Nakamura et al. Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  35. OPAL collaboration, G. Abbiendi et al., Search for chargino and neutralino production at \( \sqrt{s}=192 \) GeV to 209 GeV at LEP, Eur. Phys. J. C 35 (2004) 1 [hep-ex/0401026] [INSPIRE].

    ADS  Google Scholar 

  36. ATLAS collaboration, G. Aad et al., Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Menon, D. Morrissey and C. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev. D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE].

    ADS  Google Scholar 

  38. V. Barger, P. Langacker and H.-S. Lee, Lightest neutralino in extensions of the MSSM, Phys. Lett. B 630 (2005) 85 [hep-ph/0508027] [INSPIRE].

    ADS  Google Scholar 

  39. V. Barger et al., Recoil Detection of the Lightest Neutralino in MSSM Singlet Extensions, Phys. Rev. D 75 (2007) 115002 [hep-ph/0702036] [INSPIRE].

    ADS  Google Scholar 

  40. C. Balázs, M.S. Carena, A. Freitas and C. Wagner, Phenomenology of the NMSSM from colliders to cosmology, JHEP 06 (2007) 066 [arXiv:0705.0431] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Cao, H.E. Logan and J.M. Yang, Experimental constraints on NMSSM and implications on its phenomenology, Phys. Rev. D 79 (2009) 091701 [arXiv:0901.1437] [INSPIRE].

    ADS  Google Scholar 

  42. W. Wang, A comparative study of dark matter in the MSSM and its singlet extensions: a mini review, arXiv:1205.5081 [INSPIRE].

  43. M.A. Shifman, A. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].

    ADS  Google Scholar 

  44. A. Vainshtein, V.I. Zakharov and M.A. Shifman, Higgs particles, Sov. Phys. Usp. 23 (1980) 429 [INSPIRE].

    Article  ADS  Google Scholar 

  45. J.R. Ellis, A. Ferstl and K.A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [INSPIRE].

    ADS  Google Scholar 

  46. K. Choi, E.J. Chun and J.E. Kim, Cosmological implications of radiatively generated axion scale, Phys. Lett. B 403 (1997) 209 [hep-ph/9608222] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. CMS collaboration, V. Khachatryan et al., Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].

    ADS  Google Scholar 

  48. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].

    ADS  Google Scholar 

  49. ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt{s}=7 \) TeV in final states with missing transverse momentum and b jets, Phys. Lett. B 701 (2011) 398 [arXiv:1103.4344] [INSPIRE].

    ADS  Google Scholar 

  50. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in events with b jets and missing transverse momentum at the LHC, JHEP 07 (2011) 113 [arXiv:1106.3272] [INSPIRE].

    Article  ADS  Google Scholar 

  51. CMS collaboration, S. Chatrchyan et al., Search for new physics with jets and missing transverse momentum in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2011) 155 [arXiv:1106.4503] [INSPIRE].

    Article  ADS  Google Scholar 

  52. CMS collaboration, S. Chatrchyan et al., Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    Article  ADS  Google Scholar 

  53. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    ADS  Google Scholar 

  54. D. Das, U. Ellwanger and A.M. Teixeira, Modified signals for supersymmetry in the NMSSM with a singlino-like LSP, JHEP 04 (2012) 067 [arXiv:1202.5244] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].

    ADS  Google Scholar 

  56. M. Lisanti, P. Schuster, M. Strassler and N. Toro, Study of LHC searches for a lepton and many jets, arXiv:1107.5055 [INSPIRE].

  57. ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].

    Article  ADS  Google Scholar 

  58. ATLAS collaboration, G. Aad et al., Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb −1 of \( \sqrt{s}=7 \) TeV proton-proton collisions, JHEP 07 (2012) 167 [arXiv:1206.1760] [INSPIRE].

    Article  ADS  Google Scholar 

  59. ATLAS collaboration, G. Aad et al., Search for top and bottom squarks from gluino pair production in final states with missing transverse energy and at least three b-jets with the ATLAS detector, arXiv:1207.4686 [INSPIRE].

  60. ATLAS collaboration, G. Aad et al., Search for scalar bottom pair production with the ATLAS detector in pp Collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 181802 [arXiv:1112.3832] [INSPIRE].

    Article  ADS  Google Scholar 

  61. ATLAS collaboration, G. Aad et al., Search for a supersymmetric partner to the top quark in final states with jets and missing transverse momentum at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1208.1447 [INSPIRE].

  62. M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S. Gieseke et al., HERWIG++ 2.5 Release Note, arXiv:1102.1672 [INSPIRE].

  64. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  65. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  66. M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  67. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    Article  ADS  Google Scholar 

  68. ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment-detector, trigger and physics, arXiv:0901.0512 [INSPIRE].

  69. D.R. Tovey, Inclusive SUSY searches and measurements at ATLAS, Eur. Phys. J. Direct C 4 (2002) 1.

    Article  Google Scholar 

  70. K.J. Bae, R. Dermisek, H.D. Kim and I.-W. Kim, Mixed Bino-Wino-Higgsino dark matter in gauge messenger models, JCAP 08 (2007) 014 [hep-ph/0702041] [INSPIRE].

    Article  ADS  Google Scholar 

  71. B. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hui Im.

Additional information

ArXiv ePrint: 1208.2555

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, K.J., Choi, K., Chun, E.J. et al. Peccei-Quinn NMSSM in the light of 125 GeV Higgs. J. High Energ. Phys. 2012, 118 (2012). https://doi.org/10.1007/JHEP11(2012)118

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)118

Keywords

Navigation