Skip to main content
Log in

Construction of an asymptotic S matrix for perturbative quantum gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The infrared behavior of perturbative quantum gravity is studied using the method developed for QED by Faddeev and Kulish. The operator describing the asymptotic dynamics is derived and used to construct an IR-finite S matrix and space of asymptotic states. All-orders cancellation of IR divergences is shown explicitly at the level of matrix elements for the example case of gravitational potential scattering. As a practical application of the formalism, the soft part of a scalar scattering amplitude is related to the gravitational Wilson line and computed to all orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) 516 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. J.F. Donoghue and T. Torma, Infrared behavior of graviton-graviton scattering, Phys. Rev. D 60 (1999) 024003 [hep-th/9901156] [INSPIRE].

    ADS  Google Scholar 

  3. F. Bloch and A. Nordsieck, Note on the radiation field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].

    Article  ADS  Google Scholar 

  4. G. ’t Hooft, The scattering matrix approach for the quantum black hole: an overview, Int. J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. S.B. Giddings, The gravitational S-matrix: Erice lectures, arXiv:1105.2036 [INSPIRE].

  6. L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].

  7. L.J. Dixon, Scattering amplitudes: the most perfect microscopic structures in the universe, J. Phys. A 44 (2011) 454001 [arXiv:1105.0771] [INSPIRE].

    ADS  Google Scholar 

  8. H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].

  9. P. Kulish and L. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys. 4 (1970) 745 [Teor. Mat. Fiz. 4 (1970) 153] [INSPIRE].

    Article  Google Scholar 

  10. H. Contopanagos and M.B. Einhorn, Theory of the asymptotic S matrix for massless particles, Phys. Rev. D 45 (1992) 1291 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. R. Akhoury, R. Saotome and G. Sterman, Collinear and soft divergences in perturbative quantum gravity, Phys. Rev. D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].

    ADS  Google Scholar 

  12. V. Chung, Infrared divergence in quantum electrodynamics, Phys. Rev. 140 (1965) B1110 [INSPIRE].

    Article  ADS  Google Scholar 

  13. S.G. Naculich and H.J. Schnitzer, Eikonal methods applied to gravitational scattering amplitudes, JHEP 05 (2011) 087 [arXiv:1101.1524] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Melville, S. Naculich, H. Schnitzer and C. White, Wilson line approach to gravity in the high energy limit, arXiv:1306.6019 [INSPIRE].

  15. C.D. White, Factorization properties of soft graviton amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Beneke and G. Kirilin, Soft-collinear gravity, JHEP 09 (2012) 066 [arXiv:1207.4926] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Weinberg, Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. B.S. DeWitt, Quantum theory of gravity. 3. Applications of the covariant theory, Phys. Rev. 162 (1967) 1239 [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Aichelburg and R. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Weinberg, The quantum theory of fields, volume 1: foundations, Cambridge University Press, Cambridge U.K. (1995) [INSPIRE].

    Book  Google Scholar 

  21. T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. R. Akhoury, M. Sotiropoulos and V.I. Zakharov, The KLN theorem and soft radiation in gauge theories: Abelian case, Phys. Rev. D 56 (1997) 377 [hep-ph/9702270] [INSPIRE].

    ADS  Google Scholar 

  23. S. Gupta, Quantization of Einsteins gravitational field: linear approximation, Proc. Phys. Soc. A 65 (1952) 161.

    Article  ADS  Google Scholar 

  24. H.D. Dahmen, B. Scholtz and F. Steiner, Infrared dynamics of quantum electrodynamics and the asymptotic behavior of the electron form factor, Nucl. Phys. B 202 (1982) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  25. S.B. Giddings, M. Schmidt-Sommerfeld and J.R. Andersen, High energy scattering in gravity and supergravity, Phys. Rev. D 82 (2010) 104022 [arXiv:1005.5408] [INSPIRE].

    ADS  Google Scholar 

  26. L. Bork, D. Kazakov, G. Vartanov and A. Zhiboedov, Infrared finite observables in N = 8 supergravity, Proc. Steklov Inst. Math. 272 (2011) 39 [arXiv:1008.2302] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. Bern, L.J. Dixon, D. Dunbar, M. Perelstein and J. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.-L. Gervais and D. Zwanziger, Derivation from first principles of the infrared structure of quantum electrodynamics, Phys. Lett. B 94 (1980) 389 [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Fukuma, S. Matsuura and T. Sakai, Holographic renormalization group, Prog. Theor. Phys. 109 (2003) 489 [hep-th/0212314] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11 (2010) 014 [arXiv:1007.4592] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. H. Bondi, M. van der Burg and A. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

    Article  ADS  Google Scholar 

  32. R. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Strominger, Asymptotic symmetries of Yang-Mills theory, arXiv:1308.0589 [INSPIRE].

  34. W. Marciano and A. Sirlin, Dimensional regularization of infrared divergences, Nucl. Phys. B 88 (1975) 86 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Ware.

Additional information

ArXiv ePrint: 1308.6285

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ware, J., Saotome, R. & Akhoury, R. Construction of an asymptotic S matrix for perturbative quantum gravity. J. High Energ. Phys. 2013, 159 (2013). https://doi.org/10.1007/JHEP10(2013)159

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)159

Keywords

Navigation