Skip to main content
Log in

In wino veritas? Indirect searches shed light on neutralino dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Indirect detection constraints on gamma rays (both continuum and lines) have set strong constraints on wino dark matter. By combining results from Fermi-LAT and HESS, we show that: dark matter made entirely of light nonthermal winos is strongly excluded; dark matter consisting entirely of thermal winos is allowed only if the Milky Way dark matter distribution has a significant (≳ 0.4 kpc) core; and for plausible NFW and Einasto distributions the possibility that winos are all the dark matter can be excluded over the entire range of wino masses from 100 GeV up to 3 TeV. The case of light, nonthermal wino dark matter is particularly interesting in scenarios with decaying moduli that reheat the universe to a low temperature. Typically such models have been discussed for low reheating temperatures, not far above the BBN bound of a few MeV. We show that constraints on the allowed wino relic density push such models to higher reheating temperatures and hence heavier moduli. Even for a flattened halo model consisting of an NFW profile with constant-density core inside 1 kpc and a density near the sun of 0.3 GeV/cm3, for 150 GeV winos current data constrains the reheat temperature to be above 1.4 GeV. As a result, for models in which the wino mass is a loop factor below m 3/2, the data favor moduli that are more than an order of magnitude heavier than m 3/2. We discuss some of the sobering implications of this result for the status of supersymmetry. We also comment on other neutralino dark matter scenarios, in particular the case of mixed bino/higgsino dark matter. We show that in this case, direct and indirect searches are complementary to each other and could potentially cover most of the parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  2. R. Barbieri, M. Frigeni and F. Caravaglios, The supersymmetric Higgs for heavy superpartners, Phys. Lett. B 258 (1991) 167 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric Standard Model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    Article  ADS  Google Scholar 

  5. P. Lodone, Supersymmetry phenomenology beyond the MSSM after 5 fb−1 of LHC data, Int. J. Mod. Phys. A 27 (2012) 1230010 [arXiv:1203.6227] [INSPIRE].

    Article  ADS  Google Scholar 

  6. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  7. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. K. Choi, K.S. Jeong and K.-I. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. J.P. Conlon and F. Quevedo, Gaugino and scalar masses in the landscape, JHEP 06 (2006) 029 [hep-th/0605141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the electroweak scale and stabilizing moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G2 -MSSM: an M-theory motivated model of particle physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].

    ADS  Google Scholar 

  14. J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].

  15. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  17. L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  19. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].

  20. L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

    Article  ADS  Google Scholar 

  23. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  24. T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Kaplan, Dark matter generation and split supersymmetry, JHEP 10 (2006) 065 [hep-ph/0601262] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B.S. Acharya, G. Kane, S. Watson and P. Kumar, A non-thermal WIMP miracle, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430] [INSPIRE].

    ADS  Google Scholar 

  27. G. Arcadi and P. Ullio, Accurate estimate of the relic density and the kinetic decoupling in non-thermal dark matter models, Phys. Rev. D 84 (2011) 043520 [arXiv:1104.3591] [INSPIRE].

    ADS  Google Scholar 

  28. B. de Carlos, J. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.L. Feng and Y. Shadmi, WIMPless dark matter from non-Abelian hidden sectors with anomaly-mediated supersymmetry breaking, Phys. Rev. D 83 (2011) 095011 [arXiv:1102.0282] [INSPIRE].

    ADS  Google Scholar 

  32. N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J.L. Feng, K.T. Matchev and F. Wilczek, Neutralino dark matter in focus point supersymmetry, Phys. Lett. B 482 (2000) 388 [hep-ph/0004043] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Pierce, Dark matter in the finely tuned minimal supersymmetric Standard Model, Phys. Rev. D 70 (2004) 075006 [hep-ph/0406144] [INSPIRE].

    ADS  Google Scholar 

  36. T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, arXiv:1307.4082 [INSPIRE].

  37. G. Bélanger, C. Boehm, M. Cirelli, J. Da Silva and A. Pukhov, PAMELA and FERMI-LAT limits on the neutralino-chargino mass degeneracy, JCAP 11 (2012) 028 [arXiv:1208.5009] [INSPIRE].

    Article  Google Scholar 

  38. E.J. Chun, J.-C. Park and S. Scopel, Non-perturbative effect and PAMELA limit on electro-weak dark matter, JCAP 12 (2012) 022 [arXiv:1210.6104] [INSPIRE].

    Article  ADS  Google Scholar 

  39. T. Bringmann, L. Bergstrom and J. Edsjo, New gamma-ray contributions to supersymmetric dark matter annihilation, JHEP 01 (2008) 049 [arXiv:0710.3169] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Birkedal, K.T. Matchev, M. Perelstein and A. Spray, Robust gamma ray signature of WIMP dark matter, hep-ph/0507194 [INSPIRE].

  41. Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of milky way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].

    Article  ADS  Google Scholar 

  42. Fermi-LAT collaboration, A. Drlica-Wagner, Searching for dwarf spheroidal galaxies with the Fermi-LAT, presented at Fermi symposium, http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2012/program/fri/ADrlica-Wagner.pdf, Monterey U.S.A. (2012).

  43. D. Hooper, C. Kelso and F.S. Queiroz, Stringent and robust constraints on the dark matter annihilation cross section from the region of the galactic center, Astropart. Phys. 46 (2013) 55 [arXiv:1209.3015] [INSPIRE].

    Article  ADS  Google Scholar 

  44. H.E.S.S. collaboration, A. Abramowski et al., Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S., Phys. Rev. Lett. 106 (2011) 161301 [arXiv:1103.3266] [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. J.F. Navarro, C.S. Frenk and S.D. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J.F. Navarro, C.S. Frenk and S.D. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].

    Article  ADS  Google Scholar 

  48. J.F. Navarro et al., The inner structure of ΛCDM halos 3: universality and asymptotic slopes, Mon. Not. Roy. Astron. Soc. 349 (2004) 1039 [astro-ph/0311231] [INSPIRE].

    Article  ADS  Google Scholar 

  49. V. Springel et al., The aquarius project: the subhalos of galactic halos, Mon. Not. Roy. Astron. Soc. 391 (2008) 1685 [arXiv:0809.0898] [INSPIRE].

    Article  ADS  Google Scholar 

  50. F. Iocco, M. Pato, G. Bertone and P. Jetzer, Dark matter distribution in the milky way: microlensing and dynamical constraints, JCAP 11 (2011) 029 [arXiv:1107.5810] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Hryczuk and R. Iengo, The one-loop and Sommerfeld electroweak corrections to the wino dark matter annihilation, JHEP 01 (2012) 163 [Erratum ibid. 06 (2012) 137] [arXiv:1111.2916] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].

    ADS  Google Scholar 

  53. Fermi-LAT collaboration, Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications, arXiv:1305.5597 [INSPIRE].

  54. H.E.S.S. collaboration, A. Abramowski et al., Search for photon line-like signatures from dark matter annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].

    Article  ADS  Google Scholar 

  55. L. Bergstrom and P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B 504 (1997) 27 [hep-ph/9706232] [INSPIRE].

    Article  ADS  Google Scholar 

  56. P. Ullio and L. Bergstrom, Neutralino annihilation into a photon and a Z boson, Phys. Rev. D 57 (1998) 1962 [hep-ph/9707333] [INSPIRE].

    ADS  Google Scholar 

  57. Z. Bern, P. Gondolo and M. Perelstein, Neutralino annihilation into two photons, Phys. Lett. B 411 (1997) 86 [hep-ph/9706538] [INSPIRE].

    Article  ADS  Google Scholar 

  58. F. Boudjema, A. Semenov and D. Temes, Self-annihilation of the neutralino dark matter into two photons or a Z and a photon in the MSSM, Phys. Rev. D 72 (2005) 055024 [hep-ph/0507127] [INSPIRE].

    ADS  Google Scholar 

  59. Fermi-LAT collaboration, M. Ackermann et al., The Fermi Large Area Telescope on orbit: event classification, instrument response functions and calibration, Astrophys. J. Suppl. 203 (2012) 4 [arXiv:1206.1896] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Cahill-Rowley et al., Complementarity and searches for dark matter in the pMSSM, arXiv:1305.6921 [INSPIRE].

  61. G.R. Blumenthal, S. Faber, R. Flores and J.R. Primack, Contraction of dark matter galactic halos due to baryonic infall, Astrophys. J. 301 (1986) 27 [INSPIRE].

    Article  ADS  Google Scholar 

  62. O.Y. Gnedin et al., Halo contraction effect in hydrodynamic simulations of galaxy formation, arXiv:1108.5736 [INSPIRE].

  63. F. Marinacci, R. Pakmor and V. Springel, The formation of disc galaxies in high resolution moving-mesh cosmological simulations, arXiv:1305.5360 [INSPIRE].

  64. M.D. Weinberg and N. Katz, Bar-driven dark halo evolution: a resolution of the cusp-core controversy, Astrophys. J. 580 (2002) 627 [astro-ph/0110632] [INSPIRE].

    Article  ADS  Google Scholar 

  65. M. Kuhlen, J. Guedes, A. Pillepich, P. Madau and L. Mayer, An off-center density peak in the milky ways dark matter halo?, Astrophys. J. 765 (2013) 10 [arXiv:1208.4844] [INSPIRE].

    Article  ADS  Google Scholar 

  66. J. Dubinski, I. Berentzen and I. Shlosman, Anatomy of the bar instability in cuspy dark matter halos, Astrophys. J. 697 (2009) 293 [arXiv:0810.4925] [INSPIRE].

    Article  ADS  Google Scholar 

  67. F. Nesti and P. Salucci, The dark matter halo of the milky way, AD 2013, JCAP 07 (2013) 016 [arXiv:1304.5127] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J.L. Feng, T. Moroi, L. Randall, M. Strassler and S.-F. Su, Discovering supersymmetry at the Tevatron in wino LSP scenarios, Phys. Rev. Lett. 83 (1999) 1731 [hep-ph/9904250] [INSPIRE].

    Article  ADS  Google Scholar 

  69. ATLAS collaboration, Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 01 (2013) 131[arXiv:1210.2852] [INSPIRE].

    ADS  Google Scholar 

  70. G. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for the Polonyi potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].

    Article  ADS  Google Scholar 

  71. L. Randall and S.D. Thomas, Solving the cosmological moduli problem with weak scale inflation, Nucl. Phys. B 449 (1995) 229 [hep-ph/9407248] [INSPIRE].

    Article  ADS  Google Scholar 

  72. T. Moroi, M. Yamaguchi and T. Yanagida, On the solution to the Polonyi problem with 0 (10 TeV) gravitino mass in supergravity, Phys. Lett. B 342 (1995) 105 [hep-ph/9409367] [INSPIRE].

    Article  ADS  Google Scholar 

  73. G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].

    ADS  Google Scholar 

  74. B.S. Acharya et al., Non-thermal dark matter and the moduli problem in string frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].

    Article  ADS  Google Scholar 

  75. G. Kane, J. Shao, S. Watson and H.-B. Yu, The baryon-dark matter ratio via moduli decay after Affleck-Dine baryogenesis, JCAP 11 (2011) 012 [arXiv:1108.5178] [INSPIRE].

    Article  ADS  Google Scholar 

  76. T. Moroi, M. Nagai and M. Takimoto, Non-thermal production of wino dark matter via the decay of long-lived particles, JHEP 07 (2013) 066 [arXiv:1303.0948] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. Fan, M. Reece and L.-T. Wang, Mitigating moduli messes in low-scale SUSY breaking, JHEP 09 (2011) 126 [arXiv:1106.6044] [INSPIRE].

    Article  ADS  Google Scholar 

  78. M. Endo, K. Hamaguchi and F. Takahashi, Moduli-induced gravitino problem, Phys. Rev. Lett. 96 (2006) 211301 [hep-ph/0602061] [INSPIRE].

    Article  ADS  Google Scholar 

  79. S. Nakamura and M. Yamaguchi, Gravitino production from heavy moduli decay and cosmological moduli problem revived, Phys. Lett. B 638 (2006) 389 [hep-ph/0602081] [INSPIRE].

    Article  ADS  Google Scholar 

  80. T. Asaka, S. Nakamura and M. Yamaguchi, Gravitinos from heavy scalar decay, Phys. Rev. D 74 (2006) 023520 [hep-ph/0604132] [INSPIRE].

    ADS  Google Scholar 

  81. M. Dine, R. Kitano, A. Morisse and Y. Shirman, Moduli decays and gravitinos, Phys. Rev. D 73 (2006) 123518 [hep-ph/0604140] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  82. M. Endo, K. Hamaguchi and F. Takahashi, Moduli/inflaton mixing with supersymmetry breaking field, Phys. Rev. D 74 (2006) 023531 [hep-ph/0605091] [INSPIRE].

    ADS  Google Scholar 

  83. M. Bose, M. Dine and P. Draper, Moduli or not, Phys. Rev. D 88 (2013) 023533 [arXiv:1305.1066] [INSPIRE].

    ADS  Google Scholar 

  84. D.J. Chung, E.W. Kolb and A. Riotto, Production of massive particles during reheating, Phys. Rev. D 60 (1999) 063504 [hep-ph/9809453] [INSPIRE].

    ADS  Google Scholar 

  85. G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].

    ADS  Google Scholar 

  86. P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].

    Article  ADS  Google Scholar 

  87. A. Hryczuk, The Sommerfeld enhancement for scalar particles and application to sfermion co-annihilation regions, Phys. Lett. B 699 (2011) 271 [arXiv:1102.4295] [INSPIRE].

    Article  ADS  Google Scholar 

  88. M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at two-loop level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].

    Article  ADS  Google Scholar 

  89. T. Banks, M. Dine and M. Graesser, Supersymmetry, axions and cosmology, Phys. Rev. D 68 (2003) 075011 [hep-ph/0210256] [INSPIRE].

    ADS  Google Scholar 

  90. J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  91. H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031 [arXiv:1103.5413] [INSPIRE].

    Article  ADS  Google Scholar 

  92. K.J. Bae, H. Baer and A. Lessa, Dark radiation constraints on mixed axion/neutralino dark matter, JCAP 04 (2013) 041 [arXiv:1301.7428] [INSPIRE].

    Article  ADS  Google Scholar 

  93. P. Graf and F.D. Steffen, Dark radiation and dark matter in supersymmetric axion models with high reheating temperature, arXiv:1302.2143 [INSPIRE].

  94. L. Bergstrom, T. Bringmann and J. Edsjo, Complementarity of direct dark matter detection and indirect detection through gamma-rays, Phys. Rev. D 83 (2011) 045024 [arXiv:1011.4514] [INSPIRE].

    ADS  Google Scholar 

  95. P. Grothaus, M. Lindner and Y. Takanishi, Naturalness of neutralino dark matter, JHEP 07 (2013) 094 [arXiv:1207.4434] [INSPIRE].

    Article  ADS  Google Scholar 

  96. M. Perelstein and B. Shakya, XENON100 implications for naturalness in the MSSM, NMSSM and λ-SUSY, arXiv:1208.0833 [INSPIRE].

  97. C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and blind spots for neutralino dark matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].

    Article  ADS  Google Scholar 

  98. A. Fowlie, K. Kowalska, L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Dark matter and collider signatures of the MSSM, Phys. Rev. D 88 (2013) 055012 [arXiv:1306.1567] [INSPIRE].

    ADS  Google Scholar 

  99. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3.1: a program for calculating dark matter observables, arXiv:1305.0237 [INSPIRE].

  100. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  101. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  102. L. Bergstrom, G. Bertone, J. Conrad, C. Farnier and C. Weniger, Investigating gamma-ray lines from dark matter with future observatories, JCAP 11 (2012) 025 [arXiv:1207.6773] [INSPIRE].

    Article  ADS  Google Scholar 

  103. CTA collaboration, M. Doro et al., Dark matter and fundamental physics with the Cherenkov Telescope Array, Astropart. Phys. 43 (2013) 189 [arXiv:1208.5356] [INSPIRE].

    Article  ADS  Google Scholar 

  104. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    Article  ADS  Google Scholar 

  105. Z. Chacko and M.A. Luty, Radion mediated supersymmetry breaking, JHEP 05 (2001) 067 [hep-ph/0008103] [INSPIRE].

    Article  ADS  Google Scholar 

  106. P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    Article  ADS  Google Scholar 

  107. M. Kawasaki, T. Moroi and T. Yanagida, Can decaying particles raise the upper bound on the Peccei-Quinn scale?, Phys. Lett. B 383 (1996) 313 [hep-ph/9510461] [INSPIRE].

    Article  ADS  Google Scholar 

  108. P.W. Graham and S. Rajendran, Axion dark matter detection with cold molecules, Phys. Rev. D 84 (2011) 055013 [arXiv:1101.2691] [INSPIRE].

    ADS  Google Scholar 

  109. P.W. Graham and S. Rajendran, New observables for direct detection of axion dark matter, Phys. Rev. D 88 (2013) 035023 [arXiv:1306.6088] [INSPIRE].

    ADS  Google Scholar 

  110. D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov, Cosmic Axion Spin Precession Experiment (CASPEr), arXiv:1306.6089 [INSPIRE].

  111. R. Easther, R. Galvez, O. Ozsoy and S. Watson, Supersymmetry, nonthermal dark matter and precision cosmology, arXiv:1307.2453 [INSPIRE].

  112. M. Kawasaki and T. Yanagida, Constraint on cosmic density of the string moduli field in gauge mediated supersymmetry breaking theories, Phys. Lett. B 399 (1997) 45 [hep-ph/9701346] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  113. K. Howe and P. Saraswat, Excess Higgs production in neutralino decays, JHEP 10 (2012) 065 [arXiv:1208.1542] [INSPIRE].

    Article  ADS  Google Scholar 

  114. H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, Generic and chiral extensions of the supersymmetric Standard Model, Nucl. Phys. B 543 (1999) 47 [hep-ph/9811316] [INSPIRE].

    Article  ADS  Google Scholar 

  115. Y. Yamada, Electroweak two-loop contribution to the mass splitting within a new heavy SU(2) L fermion multiplet, Phys. Lett. B 682 (2010) 435 [arXiv:0906.5207] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Reece.

Additional information

ArXiv ePrint: 1307.4400

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J., Reece, M. In wino veritas? Indirect searches shed light on neutralino dark matter. J. High Energ. Phys. 2013, 124 (2013). https://doi.org/10.1007/JHEP10(2013)124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)124

Keywords

Navigation