Skip to main content
Log in

Continuity, deconfinement, and (super) Yang-Mills theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the phase diagram of SU(2) Yang-Mills theory with one adjoint Weyl fermion on \( {{\mathbb{R}}^3}\times {{\mathbb{S}}^1} \) as a function of the fermion mass m and the compactification scale L. This theory reduces to thermal pure gauge theory as m → ∞ and to circle-compactified (non-thermal) supersymmetric gluodynamics in the limit m → 0. In the m-L plane, there is a line of center-symmetry changing phase transitions. In the limit m → ∞, this transition takes place at L c = 1/T c , where T c is the critical temperature of the deconfinement transition in pure Yang-Mills theory. We show that near m = 0, the critical compactification scale L c can be computed using semi-classical methods and that the transition is of second order. This suggests that the deconfining phase transition in pure Yang-Mills theory is continuously connected to a transition that can be studied at weak coupling. The center-symmetry changing phase transition arises from the competition of perturbative contributions and monopole-instantons that destabilize the center, and topological molecules (neutral bions) that stabilize the center. The contribution of molecules can be computed using supersymmetry in the limit m = 0, and via the Bogomolnyi-Zinn-Justin (BZJ) prescription in non-supersymmetric gauge theory. Finally, we also give a detailed discussion of an issue that has not received proper attention in the context of N = 1 theories — the non-cancellation of nonzero-mode determinants around supersymmetric BPS and KK monopole-instanton backgrounds on \( {{\mathbb{R}}^3}\times {{\mathbb{S}}^1} \). We explain why the non-cancellation is required for consistency with holomorphy and supersymmetry and perform an explicit calculation of the one-loop determinant ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. V. Belyaev, Higher Loop Contributions To Effective Potential Of Gauge Theory At High Temperature, Phys. Lett. B 241 (1990) 91 [INSPIRE].

    ADS  Google Scholar 

  3. K. Enqvist and K. Kajantie, Hot Gluon Matter In A Constant A 0 Background, Z. Phys. C 47 (1990) 291 [INSPIRE].

    Google Scholar 

  4. C. Korthals Altes, Constrained effective potential in hot QCD, Nucl. Phys. B 420 (1994) 637 [hep-th/9310195] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Ünsal and L.G. Yaffe, Large-N volume independence in conformal and confining gauge theories, JHEP 08 (2010) 030 [arXiv:1006.2101] [INSPIRE].

    Article  Google Scholar 

  6. T. Schafer and F. Wilczek, Continuity of quark and hadron matter, Phys. Rev. Lett. 82 (1999) 3956 [hep-ph/9811473] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P.N. Meisinger and M.C. Ogilvie, Complete high temperature expansions for one loop finite temperature effects, Phys. Rev. D 65 (2002) 056013 [hep-ph/0108026] [INSPIRE].

    ADS  Google Scholar 

  8. K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. T.C. Kraan and P. van Baal, Monopole constituents inside SU(N) calorons, Phys. Lett. B 435 (1998) 389 [hep-th/9806034] [INSPIRE].

    ADS  Google Scholar 

  10. T.M. Nye and M.A. Singer, An L 2 index theorem for Dirac operators on S 1 × R 3, J. Funct. Anal. (2000) [math/0009144] [INSPIRE].

  11. E. Poppitz and M. Ünsal, Index theorem for topological excitations on R 3 × S 1 and Chern-Simons theory, JHEP 03 (2009) 027 [arXiv:0812.2085] [INSPIRE].

    Article  ADS  Google Scholar 

  12. N.M. Davies, T.J. Hollowood and V.V. Khoze, Monopoles, affine algebras and the gluino condensate, J. Math. Phys. 44 (2003) 3640 [hep-th/0006011] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. M. Ünsal, Abelian duality, confinement and chiral symmetry breaking in QCD(adj), Phys. Rev. Lett. 100 (2008) 032005 [arXiv:0708.1772] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Ünsal, Magnetic bion condensation: A New mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [arXiv:0709.3269] [INSPIRE].

    ADS  Google Scholar 

  15. M.M. Anber and E. Poppitz, Microscopic Structure of Magnetic Bions, JHEP 06 (2011) 136 [arXiv:1105.0940] [INSPIRE].

    Article  ADS  Google Scholar 

  16. E. Bogomolny, Calculation of instanton-anti-instanton contributions in quantum mechanics, Phys. Lett. B 91 (1980) 431 [INSPIRE].

    ADS  Google Scholar 

  17. J. Zinn-Justin, Multi-instanton contributions in quantum mechanics, Nucl. Phys. B 192 (1981) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  18. T. Schafer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Argyres, M. Ünsal and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev. Lett. 109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Diakonov, How to check that dyons are at work?, arXiv:1012.2296 [INSPIRE].

  21. I. Balitsky and A. Yung, Instanton molecular vacuum in N = 1 supersymmetric quantum mechanics, Nucl. Phys. B 274 (1986) 475 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. F. Karsch and E. Laermann, Thermodynamics and in medium hadron properties from lattice QCD, in R.C. Hwa et al. eds., Quark gluon plasma, pg. 1–59 [hep-lat/0305025] [INSPIRE].

  23. E. Poppitz and M. Ünsal, Seiberg-Witten andPolyakov-likemagnetic bion confinements are continuously connected, JHEP 07 (2011) 082 [arXiv:1105.3969] [INSPIRE].

    Article  ADS  Google Scholar 

  24. D. Diakonov and V. Petrov, Confining ensemble of dyons, Phys. Rev. D 76 (2007) 056001 [arXiv:0704.3181] [INSPIRE].

    ADS  Google Scholar 

  25. G. ’t Hooft, Topology of the Gauge Condition and New Confinement Phases in Nonabelian Gauge Theories, Nucl. Phys. B 190 (1981) 455 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, A First order deconfinement transition in large-N Yang-Mills theory on a small S 3, Phys. Rev. D 71 (2005) 125018 [hep-th/0502149] [INSPIRE].

    ADS  Google Scholar 

  27. D. Simic and M. Ünsal, Deconfinement in Yang-Mills theory through toroidal compactification with deformation, Phys. Rev. D 85 (2012) 105027 [arXiv:1010.5515] [INSPIRE].

    ADS  Google Scholar 

  28. M.M. Anber, E. Poppitz and M. Ünsal, 2d affine XY-spin model/4d gauge theory duality and deconfinement, JHEP 04 (2012) 040 [arXiv:1112.6389] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D. Diakonov, Instantons at work, Prog. Part. Nucl. Phys. 51 (2003) 173 [hep-ph/0212026] [INSPIRE].

    Article  ADS  Google Scholar 

  30. D. Diakonov, Topology and confinement, Nucl. Phys. Proc. Suppl. 195 (2009) 5 [arXiv:0906.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A.M. Polyakov, Quark Confinement and Topology of Gauge Groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: Confinement and large-N volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].

    ADS  Google Scholar 

  33. A. Dumitru, Y. Hatta, J. Lenaghan, K. Orginos and R.D. Pisarski, Deconfining phase transition as a matrix model of renormalized Polyakov loops, Phys. Rev. D 70 (2004) 034511 [hep-th/0311223] [INSPIRE].

    ADS  Google Scholar 

  34. R.D. Pisarski, Effective Theory of Wilson Lines and Deconfinement, Phys. Rev. D 74 (2006) 121703 [hep-ph/0608242] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. A. Dumitru, Y. Guo, Y. Hidaka, C.P.K. Altes and R.D. Pisarski, How Wide is the Transition to Deconfinement?, Phys. Rev. D 83 (2011) 034022 [arXiv:1011.3820] [INSPIRE].

    ADS  Google Scholar 

  36. A. Dumitru, Y. Guo, Y. Hidaka, C.P.K. Altes and R.D. Pisarski, Effective Matrix Model for Deconfinement in Pure Gauge Theories, arXiv:1205.0137 [INSPIRE].

  37. J.C. Myers and M.C. Ogilvie, New phases of SU(3) and SU(4) at finite temperature, Phys. Rev. D 77 (2008) 125030 [arXiv:0707.1869] [INSPIRE].

    ADS  Google Scholar 

  38. F. Bruckmann, T.G. Kovacs and S. Schierenberg, Anderson localization through Polyakov loops: lattice evidence and Random matrix model, Phys. Rev. D 84 (2011) 034505 [arXiv:1105.5336] [INSPIRE].

    ADS  Google Scholar 

  39. M. D’Elia and F. Negro, θ dependence of the deconfinement temperature in Yang-Mills theories, Phys. Rev. Lett. 109 (2012) 072001 [arXiv:1205.0538] [INSPIRE].

    Article  ADS  Google Scholar 

  40. N.M. Davies, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Gluino condensate and magnetic monopoles in supersymmetric gluodynamics, Nucl. Phys. B 559 (1999) 123 [hep-th/9905015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. N. Dorey, V.V. Khoze, M. Mattis, D. Tong and S. Vandoren, Instantons, three-dimensional gauge theory and the Atiyah-Hitchin manifold, Nucl. Phys. B 502 (1997) 59 [hep-th/9703228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. E.J. Weinberg, Parameter Counting for Multi-Monopole Solutions, Phys. Rev. D 20 (1979) 936 [INSPIRE].

    ADS  Google Scholar 

  43. R. Kaul, Monopole mass in supersymmetric gauge theories, Phys. Lett. B 143 (1984) 427 [INSPIRE].

    ADS  Google Scholar 

  44. A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, Quantum corrections to solitons and BPS saturation, arXiv:0902.1904 [INSPIRE].

  45. H.-Y. Chen, N. Dorey and K. Petunin, Wall Crossing and Instantons in Compactified Gauge Theory, JHEP 06 (2010) 024 [arXiv:1004.0703] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [INSPIRE].

  47. J. Wess and J. Bagger, Supersymmetry and supergravity, 2nd ed., Princeton University Press, Princeton, NJ, U.S.A. (1992).

    Google Scholar 

  48. I. Affleck, J.A. Harvey and E. Witten, Instantons and (Super)Symmetry Breaking in (2 + 1)-Dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A.V. Smilga and A. Vainshtein, Background field calculations and nonrenormalization theorems in 4 − D supersymmetric gauge theories and their low-dimensional descendants, Nucl. Phys. B 704 (2005) 445 [hep-th/0405142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Poppitz.

Additional information

ArXiv ePrint: 1205.0290

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poppitz, E., Schäfer, T. & Ünsal, M. Continuity, deconfinement, and (super) Yang-Mills theory. J. High Energ. Phys. 2012, 115 (2012). https://doi.org/10.1007/JHEP10(2012)115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)115

Keywords

Navigation