Skip to main content
Log in

Corrections to the SU(3) × SU(3) Gell-Mann-Oakes-Renner relation and chiral couplings \( L_8^r \) and \( H_2^r \)

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Next to leading order corrections to the SU(3) × SU(3) Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is ψ 5(0) = (2.8 ± 0.3) ×10-3 GeV4, leading to the chiral corrections to GMOR: δ K = (55 ± 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2) × SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2) × SU(2), δ π , we are able to determine two low energy constants of chiral perturbation theory, i.e. \( L_8^r=\left( {1.0\pm 0.3} \right)\times {10^{-3 }} \), and \( H_2^r=-\left( {4.7\pm 0.6} \right)\times {10^{-3 }} \), both atthe scaleof the ρ-meson mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Pagels, Departures from chiral symmetry, Phys. Rep. C 16 (1975) 219.

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Dominguez, A. Ramlakan and K. Schilcher, Ratio of strange to nonstrange quark condensates in QCD, Phys. Lett. B 511 (2001) 59 [hep-ph/0104262] [INSPIRE].

    ADS  Google Scholar 

  3. M. Jamin and B.O. Lange, f (B) and f (Bs) from QCD sum rules, Phys. Rev. D 65 (2002) 056005 [hep-ph/0108135] [INSPIRE].

    ADS  Google Scholar 

  4. C.A. Dominguez, N.F. Nasrallah and K. Schilcher, Strange quark condensate from QCD sum rules to five loops, JHEP 02 (2008) 072 [arXiv:0711.3962] [INSPIRE].

    Article  ADS  Google Scholar 

  5. P. Colangelo, A. Khodjamirian, QCD sum rules, a modern perspective, in At the frontier of particle physics. Handbook of QCD, M. Shifman ed., World Scientific, Singapore (2001) 1495.

  6. M. Gell-Mann, R. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].

    Article  ADS  Google Scholar 

  7. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  8. J.L. Rosner and S. Stone, Leptonic decays of charged pseudoscalar mesons, arXiv:1002.1655 [INSPIRE].

  9. J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Scherer, Introduction to chiral perturbation theory, Adv. Nucl. Phys. 27 (2003) 277 [hep-ph/0210398] [INSPIRE].

    Article  Google Scholar 

  11. M. Jamin, Flavor symmetry breaking of the quark condensate and chiral corrections to the Gell-Mann-Oakes-Renner relation, Phys. Lett. B 538 (2002) 71 [hep-ph/0201174] [INSPIRE].

    ADS  Google Scholar 

  12. G. Amoros, J. Bijnens and P. Talavera, QCD isospin breaking in meson masses, decay constants and quark mass ratios, Nucl. Phys. B 602 (2001) 87 [hep-ph/0101127] [INSPIRE].

    Article  ADS  Google Scholar 

  13. D.J. Broadhurst, A strong constraint on chiral symmetry breaking at short distances, Nucl. Phys. B 85 (1975) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  14. D.J. Broadhurst, Chiral symmetry breaking and perturbative QCD, Phys. Lett. B 101 (1981) 423 [INSPIRE].

    ADS  Google Scholar 

  15. D.J. Broadhurst and S.C. Generalis, Open university report OUT-4102-8 (1982) (unpublished).

  16. V. Spiridonov and K. Chetyrkin, Nonleading mass corrections and renormalization of the operators \( M\;\bar{\psi}\psi \) and \( g_{{\mu \nu}}^2 \) ), Sov. J. Nucl. Phys. 47 (1988) 522 [INSPIRE].

    Google Scholar 

  17. M. Jamin and M. Münz, The strange quark mass from QCD sum rules, Z. Phys. C 66 (1995) 633 [hep-ph/9409335] [INSPIRE].

    ADS  Google Scholar 

  18. K. Chetyrkin, C. Dominguez, D. Pirjol and K. Schilcher, Mass singularities in light quark correlators: the strange quark case, Phys. Rev. D 51 (1995) 5090 [hep-ph/9409371] [INSPIRE].

    ADS  Google Scholar 

  19. J. Bordes, C. Dominguez, P. Moodley, J. Penarrocha and K. Schilcher, Chiral corrections to the SU(2) × SU(2) Gell-Mann-Oakes-Renner relation, JHEP 05 (2010) 064 [arXiv:1003.3358] [INSPIRE].

    Article  ADS  Google Scholar 

  20. C. Dominguez, The Goldberger-Treiman relation: a probe of the chiral symmetries of quantum chromodynamics, Riv. Nuovo Cim. 8N6 (1985) 1 [INSPIRE].

    Article  Google Scholar 

  21. C.A. Dominguez, N.F. Nasrallah, R. Röntsch and K. Schilcher, Strange quark mass from finite energy QCD sum rules to five loops, JHEP 05 (2008) 020 [arXiv:0712.0768] [INSPIRE].

    Article  ADS  Google Scholar 

  22. C. Dominguez, N. Nasrallah, R. Röntsch and K. Schilcher, Up and down quark masses from finite energy QCD sum rules to five loops, Phys. Rev. D 79 (2009) 014009 [arXiv:0806.0467] [INSPIRE].

    ADS  Google Scholar 

  23. K. Chetyrkin, A. Kataev and F. Tkachov, Higher order corrections to Σ − t(e+ehadrons) in quantum chromodynamics, Phys. Lett. B 85 (1979) 277 [INSPIRE].

    ADS  Google Scholar 

  24. M. Dine and J. Sapirstein, Higher order QCD corrections in e+e annihilation, Phys. Rev. Lett. 43 (1979) 668 [INSPIRE].

    Article  ADS  Google Scholar 

  25. W. Celmaster and R.J. Gonsalves, An analytic calculation of higher order quantum chromodynamic corrections in e+e annihilation, Phys. Rev. Lett. 44 (1980) 560 [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Gorishnii, A. Kataev and S. Larin, The \( O\left( {\alpha_s^3} \right) \) corrections to σtot(e+ehadrons) and γ(τ → τ -neutrino + hadrons) in QCD, Phys. Lett. B 259 (1991) 144 [INSPIRE].

    ADS  Google Scholar 

  27. L.R. Surguladze and M.A. Samuel, Total hadronic cross-section in e+e annihilation at the four loop level of perturbative QCD, Phys. Rev. Lett. 66 (1991) 560 [Erratum ibid. 66 (1991) 2416] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. van Ritbergen, J. Vermaseren and S. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

    ADS  Google Scholar 

  29. P. Baikov, K. Chetyrkin and J.H. Kuhn, Scalar correlator at \( O\left( {\alpha_s^4} \right) \) , Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Dominguez, Hadronic corrections to QCD sum rules and light quark masses, Z. Phys. C 26 (1984) 269 [INSPIRE].

    ADS  Google Scholar 

  31. C. Dominguez and E. de Rafael, Light quark masses in QCD from local duality, Annals Phys. 174 (1987) 372 [INSPIRE].

    Article  ADS  Google Scholar 

  32. N. Bilic, C.A. Dominguez and B. Guberina, QCD calculation of K0 anti-K0 mixing from three point function sum rules, Z. Phys. C 39 (1988) 351 [INSPIRE].

    Google Scholar 

  33. C. Dominguez, L. Pirovano and K. Schilcher, The strange quark mass from QCD sum rules in the pseudoscalar channel, Phys. Lett. B 425 (1998) 193 [hep-ph/9712369] [INSPIRE].

    ADS  Google Scholar 

  34. K. Maltman, Constraints on hadronic spectral functions from continuous families of finite energy sum rules, Phys. Lett. B 440 (1998) 367 [hep-ph/9901239] [INSPIRE].

    ADS  Google Scholar 

  35. C. Dominguez and K. Schilcher, Chiral sum rules and duality in QCD, Phys. Lett. B 448 (1999) 93 [hep-ph/9811261] [INSPIRE].

    ADS  Google Scholar 

  36. C. Dominguez and K. Schilcher, Finite energy chiral sum rules in QCD, Phys. Lett. B 581 (2004) 193 [hep-ph/0309285] [INSPIRE].

    ADS  Google Scholar 

  37. O. Catà, M. Golterman and S. Peris, Unraveling duality violations in hadronic τ decays, Phys. Rev. D 77 (2008) 093006 [arXiv:0803.0246] [INSPIRE].

    ADS  Google Scholar 

  38. M. Gonzalez-Alonso, A. Pich and J. Prades, Pinched weights and duality violation in QCD sum rules: a critical analysis, Phys. Rev. D 82 (2010) 014019 [arXiv:1004.4987] [INSPIRE].

    ADS  Google Scholar 

  39. C. Dominguez, N. Nasrallah and K. Schilcher, Confronting QCD with the experimental hadronic spectral functions from τ -decay, Phys. Rev. D 80 (2009) 054014 [arXiv:0903.3463] [INSPIRE].

    ADS  Google Scholar 

  40. S. Bethke, A.H. Hoang, S. Kluth, J. Schieck, I.W. Stewart, et al., Workshop on precision measurements of αs, arXiv:1110.0016 [INSPIRE].

  41. C. Dominguez, Determination of light quark masses in QCD, Int. J. Mod. Phys. A 25 (2010) 5223 [arXiv:1005.3724] [INSPIRE].

    ADS  Google Scholar 

  42. C. Dominguez, Quark masses in QCD: a progress report, Mod. Phys. Lett. A 26 (2011) 691 [arXiv:1103.5864] [INSPIRE].

    ADS  Google Scholar 

  43. C. Dominguez and M. Loewe, Chiral and flavor SU(2) and SU(3) symmetry breaking in quantum chromodynamics, Phys. Rev. D 31 (1985) 2930 [INSPIRE].

    ADS  Google Scholar 

  44. G. Colangelo, S. Dürr, A. Juttner, L. Lellouch, H. Leutwyler, et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].

    Article  ADS  Google Scholar 

  45. PACS-CS collaboration, S. Aoki et al., 2 + 1 flavor lattice QCD toward the physical point, Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661] [INSPIRE].

    ADS  Google Scholar 

  46. RBC-UKQCD collaboration, C. Allton et al., Physical results from 2 + 1 flavor domain wall QCD and SU(2) chiral perturbation theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [INSPIRE].

    ADS  Google Scholar 

  47. MILC collaboration, C. Bernard et al., Status of the MILC light pseudoscalar meson project, PoS LAT2007 (2007) 090 [arXiv:0710.1118] [INSPIRE].

    Google Scholar 

  48. I. Rosell, J.J. Sanz-Cillero and A. Pich, Towards a determination of the chiral couplings at NLO in 1/NC : \( L_{\mu}^{r_8 } \) , JHEP 01 (2007) 039 [hep-ph/0610290] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. Bijnens and I. Jemos, A new global fit of the \( L_i^r \) at next-to-next-to-leading order in chiral perturbation theory, Nucl. Phys. B 854 (2012) 631 [arXiv:1103.5945] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Dominguez.

Additional information

ArXiv ePrint: 1208.1159

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordes, J., Dominguez, C.A., Moodley, P. et al. Corrections to the SU(3) × SU(3) Gell-Mann-Oakes-Renner relation and chiral couplings \( L_8^r \) and \( H_2^r \) . J. High Energ. Phys. 2012, 102 (2012). https://doi.org/10.1007/JHEP10(2012)102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)102

Keywords

Navigation