Abstract
The conjectured F-theorem for three-dimensional field theories states that the finite part of the free energy on S 3 decreases along RG trajectories and is stationary at the fixed points. In previous work various successful tests of this proposal were carried out for theories with \( \mathcal{N} = 2 \) supersymmetry. In this paper we perform more general tests that do not rely on supersymmetry. We study perturbatively the RG flows produced by weakly relevant operators and show that the free energy decreases monotonically. We also consider large N field theories perturbed by relevant double trace operators, free massive field theories, and some non-Abelian gauge theories. In all cases the free energy in the IR is smaller than in the UV, consistent with the F-theorem. We discuss other odd-dimensional Euclidean theories on S d and provide evidence that (−1)(d−1)/2 log|Z| decreases along RG flow; in the particular case d = 1 this is the well-known g-theorem.
Similar content being viewed by others
References
A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [SPIRES].
J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [SPIRES].
D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [SPIRES].
K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].
D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, Commun. Math. Phys. 268 (2006) 39 [hep-th/0503183] [SPIRES].
A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization, JHEP 11 (2005) 019 [hep-th/0506232] [SPIRES].
R. Eager, Equivalence of A-Maximization and Volume Minimization, arXiv:1011.1809 [SPIRES].
Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, arXiv:1107.3987 [SPIRES].
T. Appelquist, A.G. Cohen and M. Schmaltz, A new constraint on strongly coupled field theories, Phys. Rev. D 60 (1999) 045003 [hep-th/9901109] [SPIRES].
S. Sachdev, Polylogarithm identities in a conformal field theory in three-dimensions, Phys. Lett. B 309 (1993) 285 [hep-th/9305131] [SPIRES].
A.V. Chubukov, S. Sachdev and J. Ye, Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state, Phys. Rev. B 49 (1994) 11919 [SPIRES].
S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [SPIRES].
A.C. Petkou, C T and C J up to next-to-leading order in 1/N in the conformally invariant 0(N) vector model for 2 < d < 4, Phys. Lett. B 359 (1995) 101 [hep-th/9506116] [SPIRES].
E. Barnes, E. Gorbatov, K.A. Intriligator, M. Sudano and J. Wright, The exact superconformal R-symmetry minimizes τ RR, Nucl. Phys. B 730 (2005) 210 [hep-th/0507137] [SPIRES].
D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, arXiv:1012.3210 [SPIRES].
D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [SPIRES].
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].
A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].
N.A. Nekrasov, Seiberg-Witten Prepotential From Instanton Counting, Adv. Theor. Math. Phys. 7 (2004) 831[hep-th/0206161] [SPIRES].
N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [SPIRES].
C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [SPIRES].
R.C. Santamaria, M. Mariño and P. Putrov, Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories, arXiv:1011.6281 [SPIRES].
D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [SPIRES].
S. Cheon, H. Kim and N. Kim, Calculating the partition function of N = 2 Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [SPIRES].
I.R. Klebanov and A.A. Tseytlin, Entropy of Near-Extremal Black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [SPIRES].
A. Amariti, On the exact R charge for N = 2 CS theories, JHEP 06 (2011) 110 [arXiv:1103.1618] [SPIRES].
D. Jafferis and X. Yin, A Duality Appetizer, arXiv:1103.5700 [SPIRES].
V. Niarchos, Comments on F-maximization and R-symmetry in 3D SCFTs, J. Phys. A 44 (2011) 305404 [arXiv:1103.5909] [SPIRES].
B. Willett and I. Yaakov, N = 2 Dualities and Z Extremization in Three Dimensions, arXiv:1104.0487 [SPIRES].
S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, Supersymmetric States in Large-N Chern-Simons-Matter Theories, arXiv:1104.0680 [SPIRES].
A. Amariti and M. Siani, Z-extremization and F-theorem in Chern-Simons matter theories, arXiv:1105.0933 [SPIRES].
S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and mirror symmetry, arXiv:1105.2551 [SPIRES].
D.R. Gulotta, C.P. Herzog and S.S. Pufu, From Necklace Quivers to the F-theorem, Operator Counting and T(U(N)), arXiv:1105.2817 [SPIRES].
A. Amariti and M. Siani, F-maximization along the RG flows: a proposal, arXiv:1105.3979 [SPIRES].
T. Nishioka, Y. Tachikawa and M. Yamazaki, 3D Partition function as overlap of wavefunctions, JHEP 08 (2011) 003 [arXiv:1105.4390] [SPIRES].
G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [SPIRES].
R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [SPIRES].
H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [SPIRES].
J.S. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [SPIRES].
A.W.W. Ludwig and J.L. Cardy, Perturbative Evaluation of the Conformal Anomaly at New Critical Points with Applications to Random Systems, Nucl. Phys. B 285 (1987) 687 [SPIRES].
I. Affleck and A.W.W. Ludwig, Universal noninteger ’ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [SPIRES].
I. Affleck and A.W.W. Ludwig, Exact conformal field theory results on the multichannel Kondo effect: Single fermion Green’s function, selfenergy and resistivity, Phys. Rev. B 48 (1993) 7297.
D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [SPIRES].
S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double-trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [SPIRES].
D.E. Diaz and H. Dorn, Partition functions and double-trace deformations in AdS/CFT, JHEP 05 (2007) 046 [hep-th/0702163] [SPIRES].
A. Allais, Double-trace deformations, holography and the c-conjecture, JHEP 11 (2010) 040 [arXiv:1007.2047] [SPIRES].
C.G. Callan, I.R. Klebanov, J.M. Maldacena and A. Yegulalp, Magnetic fields and fractional statistics in boundary conformal field theory, Nucl. Phys. B 443 (1995) 444 [hep-th/9503014] [SPIRES].
A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381 [SPIRES].
A.M. Polyakov, Contemporary Concepts in Physics. Vol. 3: Gauge fields and strings, Harwood Academic Publishers, Chur Switzerland (1987), pg. 301.
J.R. Quine and J. Choi, Zeta regularized products and functional determinants on spheres, Rocky Mountain J. Math. 26 (1996) 719.
H. Kumagai, The determinant of the Laplacian on the n-sphere, Acta Arith. 91 (1999) 199.
M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, arXiv:1104.0783 [SPIRES].
E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [SPIRES].
A.J. Niemi and G.W. Semenoff, Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times, Phys. Rev. Lett. 51 (1983) 2077 [SPIRES].
A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [SPIRES].
E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].
I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [SPIRES].
M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [SPIRES].
M.A. Vasiliev, Higher-spin gauge theories in four, three and two dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [SPIRES].
M.A. Vasiliev, Higher spin gauge theories: Star-product and AdS space, hep-th/9910096 [SPIRES].
S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [SPIRES].
S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [SPIRES].
S. Giombi and X. Yin, On Higher Spin Gauge Theory and the Critical O(N) Model, arXiv:1105.4011 [SPIRES].
R.d.M. Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [SPIRES].
M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [SPIRES].
R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher-spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [SPIRES].
E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [SPIRES].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1105.4598
Rights and permissions
About this article
Cite this article
Klebanov, I.R., Pufu, S.S. & Safdi, B.R. F-theorem without supersymmetry. J. High Energ. Phys. 2011, 38 (2011). https://doi.org/10.1007/JHEP10(2011)038
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2011)038