Skip to main content
Log in

F-theorem without supersymmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The conjectured F-theorem for three-dimensional field theories states that the finite part of the free energy on S 3 decreases along RG trajectories and is stationary at the fixed points. In previous work various successful tests of this proposal were carried out for theories with \( \mathcal{N} = 2 \) supersymmetry. In this paper we perform more general tests that do not rely on supersymmetry. We study perturbatively the RG flows produced by weakly relevant operators and show that the free energy decreases monotonically. We also consider large N field theories perturbed by relevant double trace operators, free massive field theories, and some non-Abelian gauge theories. In all cases the free energy in the IR is smaller than in the UV, consistent with the F-theorem. We discuss other odd-dimensional Euclidean theories on S d and provide evidence that (−1)(d−1)/2 log|Z| decreases along RG flow; in the particular case d = 1 this is the well-known g-theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  6. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  8. D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, Commun. Math. Phys. 268 (2006) 39 [hep-th/0503183] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization, JHEP 11 (2005) 019 [hep-th/0506232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Eager, Equivalence of A-Maximization and Volume Minimization, arXiv:1011.1809 [SPIRES].

  11. Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, arXiv:1107.3987 [SPIRES].

  12. T. Appelquist, A.G. Cohen and M. Schmaltz, A new constraint on strongly coupled field theories, Phys. Rev. D 60 (1999) 045003 [hep-th/9901109] [SPIRES].

    ADS  Google Scholar 

  13. S. Sachdev, Polylogarithm identities in a conformal field theory in three-dimensions, Phys. Lett. B 309 (1993) 285 [hep-th/9305131] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. A.V. Chubukov, S. Sachdev and J. Ye, Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state, Phys. Rev. B 49 (1994) 11919 [SPIRES].

    ADS  Google Scholar 

  15. S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A.C. Petkou, C T and C J up to next-to-leading order in 1/N in the conformally invariant 0(N) vector model for 2 < d < 4, Phys. Lett. B 359 (1995) 101 [hep-th/9506116] [SPIRES].

    ADS  Google Scholar 

  17. E. Barnes, E. Gorbatov, K.A. Intriligator, M. Sudano and J. Wright, The exact superconformal R-symmetry minimizes τ RR, Nucl. Phys. B 730 (2005) 210 [hep-th/0507137] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, arXiv:1012.3210 [SPIRES].

  19. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].

  21. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. N.A. Nekrasov, Seiberg-Witten Prepotential From Instanton Counting, Adv. Theor. Math. Phys. 7 (2004) 831[hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

  23. N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  24. C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [SPIRES].

    ADS  Google Scholar 

  25. R.C. Santamaria, M. Mariño and P. Putrov, Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories, arXiv:1011.6281 [SPIRES].

  26. D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [SPIRES].

    ADS  Google Scholar 

  27. S. Cheon, H. Kim and N. Kim, Calculating the partition function of N = 2 Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. I.R. Klebanov and A.A. Tseytlin, Entropy of Near-Extremal Black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Amariti, On the exact R charge for N = 2 CS theories, JHEP 06 (2011) 110 [arXiv:1103.1618] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Jafferis and X. Yin, A Duality Appetizer, arXiv:1103.5700 [SPIRES].

  31. V. Niarchos, Comments on F-maximization and R-symmetry in 3D SCFTs, J. Phys. A 44 (2011) 305404 [arXiv:1103.5909] [SPIRES].

    MathSciNet  Google Scholar 

  32. B. Willett and I. Yaakov, N = 2 Dualities and Z Extremization in Three Dimensions, arXiv:1104.0487 [SPIRES].

  33. S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, Supersymmetric States in Large-N Chern-Simons-Matter Theories, arXiv:1104.0680 [SPIRES].

  34. A. Amariti and M. Siani, Z-extremization and F-theorem in Chern-Simons matter theories, arXiv:1105.0933 [SPIRES].

  35. S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and mirror symmetry, arXiv:1105.2551 [SPIRES].

  36. D.R. Gulotta, C.P. Herzog and S.S. Pufu, From Necklace Quivers to the F-theorem, Operator Counting and T(U(N)), arXiv:1105.2817 [SPIRES].

  37. A. Amariti and M. Siani, F-maximization along the RG flows: a proposal, arXiv:1105.3979 [SPIRES].

  38. T. Nishioka, Y. Tachikawa and M. Yamazaki, 3D Partition function as overlap of wavefunctions, JHEP 08 (2011) 003 [arXiv:1105.4390] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. J.S. Dowker, Entanglement entropy for odd spheres, arXiv:1012.1548 [SPIRES].

  43. A.W.W. Ludwig and J.L. Cardy, Perturbative Evaluation of the Conformal Anomaly at New Critical Points with Applications to Random Systems, Nucl. Phys. B 285 (1987) 687 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. I. Affleck and A.W.W. Ludwig, Universal noninteger ’ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. I. Affleck and A.W.W. Ludwig, Exact conformal field theory results on the multichannel Kondo effect: Single fermion Green’s function, selfenergy and resistivity, Phys. Rev. B 48 (1993) 7297.

    ADS  Google Scholar 

  46. D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double-trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. D.E. Diaz and H. Dorn, Partition functions and double-trace deformations in AdS/CFT, JHEP 05 (2007) 046 [hep-th/0702163] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Allais, Double-trace deformations, holography and the c-conjecture, JHEP 11 (2010) 040 [arXiv:1007.2047] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. C.G. Callan, I.R. Klebanov, J.M. Maldacena and A. Yegulalp, Magnetic fields and fractional statistics in boundary conformal field theory, Nucl. Phys. B 443 (1995) 444 [hep-th/9503014] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970) 381 [SPIRES].

    ADS  Google Scholar 

  52. A.M. Polyakov, Contemporary Concepts in Physics. Vol. 3: Gauge fields and strings, Harwood Academic Publishers, Chur Switzerland (1987), pg. 301.

    Google Scholar 

  53. J.R. Quine and J. Choi, Zeta regularized products and functional determinants on spheres, Rocky Mountain J. Math. 26 (1996) 719.

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Kumagai, The determinant of the Laplacian on the n-sphere, Acta Arith. 91 (1999) 199.

    MathSciNet  MATH  Google Scholar 

  55. M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, arXiv:1104.0783 [SPIRES].

  56. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. A.J. Niemi and G.W. Semenoff, Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times, Phys. Rev. Lett. 51 (1983) 2077 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  59. E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].

  60. I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. M.A. Vasiliev, Higher-spin gauge theories in four, three and two dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. M.A. Vasiliev, Higher spin gauge theories: Star-product and AdS space, hep-th/9910096 [SPIRES].

  64. S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  66. S. Giombi and X. Yin, On Higher Spin Gauge Theory and the Critical O(N) Model, arXiv:1105.4011 [SPIRES].

  67. R.d.M. Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [SPIRES].

    ADS  Google Scholar 

  68. M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [SPIRES].

    ADS  Google Scholar 

  69. R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher-spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  70. E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silviu S. Pufu.

Additional information

ArXiv ePrint: 1105.4598

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klebanov, I.R., Pufu, S.S. & Safdi, B.R. F-theorem without supersymmetry. J. High Energ. Phys. 2011, 38 (2011). https://doi.org/10.1007/JHEP10(2011)038

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)038

Keywords