Skip to main content
Log in

Holographic view on quantum correlations and mutual information between disjoint blocks of a quantum critical system

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In (d + 1) dimensional Multiscale Entanglement Renormalization Ansatz (MERA) networks, tensors are connected so as to reproduce the discrete, (d + 2) holographic geometry of Anti de Sitter space (AdS d+2) with the original system lying at the boundary. We analyze the MERA renormalization flow that arises when computing the quantum correlations between two disjoint blocks of a quantum critical system, to show that the structure of the causal cones characteristic of MERA, requires a transition between two different regimes attainable by changing the ratio between the size and the separation of the two disjoint blocks. We argue that this transition in the MERA causal developments of the blocks may be easily accounted by an AdS d+2 black hole geometry when the mutual information is computed using the Ryu-Takayanagi formula. As an explicit example, we use a BTZ AdS3 black hole to compute the MI and the quantum correlations between two disjoint intervals of a one dimensional boundary critical system. Our results for this low dimensional system not only show the existence of a phase transition emerging when the conformal four point ratio reaches a critical value but also provide an intuitive entropic argument accounting for the source of this instability. We discuss the robustness of this transition when finite temperature and finite size effects are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Caraglio and F. Gliozzi, Entanglement Entropy and Twist Fields, JHEP 11 (2008) 076 [arXiv:0808.4094] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [SPIRES].

  4. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [SPIRES].

  11. S. Furukawa, V. Pasquier and J. Shiraishi, Mutual Information and Compactification Radius in a c = 1 Critical Phase in One Dimension, arXiv:0809.5113 [SPIRES].

  12. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. (2009) P11001 [arXiv:0905.2069] [SPIRES].

  13. M.W. Wolf, F. Verstraete, M. Hastings and J. Cirac, Area laws in quantum systems: Mutual information and correlations, Phys. Rev. Lett. 100 (2008) 070502 [arXiv:0704.3906].

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Vidal and R. F. Werner, A computable measure of entanglement, Phys. Rev. A 65 (2002) 032314 [quant-ph/0102117].

    ADS  Google Scholar 

  15. H. Wichterich, J. Molina-Vilaplana and S. Bose, Scaling of entanglement between separated blocks in spin chains at criticality, Phys. Rev. A 80 (2009) 010304 [arXiv:0811.1285].

    ADS  Google Scholar 

  16. S. Marcovitch, A. Retzker, M.B. Plenio and B. Reznik, Critical and noncritical long-range entanglement in Klein-Gordon fields, Phys. Rev. A 80 (2009) 012325 [arXiv:0811.1288].

    MathSciNet  ADS  Google Scholar 

  17. H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. (2005) P07007 [cond-mat/0505563] [SPIRES].

  19. M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [SPIRES].

    ADS  Google Scholar 

  20. B.-Q. Jin and V. Korepin, Entanglement entropy for disjoint subsystems in XX spin chain, arXiv:1104.1004 [SPIRES].

  21. S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].

  22. B. Swingle, Entanglement Renormalization and Holography, arXiv:0905.1317 [SPIRES].

  23. B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [SPIRES].

  24. G. Evenbly and G. Vidal, Tensor network states and geometry, arXiv:1106.1082 [SPIRES].

  25. G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett. 101 (2008) 110501 [quant-ph/0610099].

    Article  ADS  Google Scholar 

  26. G. Vidal, Entanglement renormalization, Phys. Rev. Lett. 99 (2007) 220405 [cond-mat/0512165v2].

    Article  ADS  Google Scholar 

  27. D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [SPIRES].

  29. J. Haegeman, T.J. Osborne, H. Verschelde and F. Verstraete, Entanglement renormalization for quantum fields, arXiv:1102.5524 [SPIRES].

  30. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. P. Kraus, Lectures on black holes and the AdS 3 /CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. C. Misner, K. Thorne and J. Wheeler, Gravitation, W.H. Freeman, New York U.S.A. (1973).

    Google Scholar 

  33. V. Balasubramanian, I. García-Etxebarria, F. Larsen and J. Simón, Helical Luttinger Liquids and Three Dimensional Black Holes, arXiv:1012.4363 [SPIRES].

  34. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  37. E. Tonni, Holographic entanglement entropy: near horizon geometry and disconnected regions, JHEP 05 (2011) 004 [arXiv:1011.0166] [SPIRES].

    Article  ADS  Google Scholar 

  38. D. Birmingham, I. Sachs and S.N. Solodukhin, Relaxation in conformal field theory, Hawking-Page transition and quasinormal/normal modes, Phys. Rev. D 67 (2003) 104026 [hep-th/0212308] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. P.D. Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Springer, New York U.S.A. (1997).

    Book  MATH  Google Scholar 

  40. D. Mumford, TATA Lectures on Theta, Birkhauser, Basel Switzerland (1982).

    Google Scholar 

  41. L. Álvarez-Gaumé, G.W. Moore and C. Vafa, Theta functions, modular invariance and strings, Commun. Math. Phys. 106 (1986) 1 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  42. P. Hayden, M. Headrick and A. Maloney, Holographic Mutual Information is Monogamous, arXiv:1107.2940 [SPIRES].

  43. V. Coffman, J. Kundu and W.K. Wootters, Distributed Entanglement, Phys. Rev. A 61 (2000) 052306 [quant-ph/9907047] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Molina-Vilaplana.

Additional information

ArXiv ePrint: 1108.1277

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina-Vilaplana, J., Sodano, P. Holographic view on quantum correlations and mutual information between disjoint blocks of a quantum critical system. J. High Energ. Phys. 2011, 11 (2011). https://doi.org/10.1007/JHEP10(2011)011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)011

Keywords

Navigation