Skip to main content
Log in

Fluctuating black hole horizons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].

  2. L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  6. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  8. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. G. ’t Hooft, On the quantum structure of a black hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Arzano, S. Bianco and O. Dreyer, From bricks to quasinormal modes: a new perspective on black hole entropy, arXiv:1305.3479 [INSPIRE].

  20. J.W. York, Dynamical origin of black hole radiance, Phys. Rev. D 28 (1983) 2929 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. M. Parikh and F. Wilczek, An action for black hole membranes, Phys. Rev. D 58 (1998) 064011 [gr-qc/9712077] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, London U.K. (1986).

    Google Scholar 

  23. J.P. Lemos and O.B. Zaslavskii, Membrane paradigm and entropy of black holes in the Euclidean action approach, Phys. Rev. D 84 (2011) 064017 [arXiv:1108.1801] [INSPIRE].

    ADS  Google Scholar 

  24. S. Carlip, Dynamics of asymptotic diffeomorphisms in (2 + 1)-dimensional gravity, Class. Quant. Grav. 22 (2005) 3055 [gr-qc/0501033] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. H. Lü, J. Mei and C. Pope, Kerr/CFT correspondence in diverse dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [INSPIRE].

    Article  Google Scholar 

  26. D.D. Chow, M. Cvetič, H. Lü and C. Pope, Extremal black hole/CFT correspondence in (gauged) supergravities, Phys. Rev. D 79 (2009) 084018 [arXiv:0812.2918] [INSPIRE].

    ADS  Google Scholar 

  27. J. Mei, The entropy for general extremal black holes, JHEP 04 (2010) 005 [arXiv:1002.1349] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Mei, Conformal symmetries of the Einstein-Hilbert action on horizons of stationary and axisymmetric black holes, Class. Quant. Grav. 29 (2012) 095020 [arXiv:1108.3841] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Carlip, Extremal and nonextremal Kerr/CFT correspondences, JHEP 04 (2011) 076 [Erratum ibid. 01 (2012) 008] [arXiv:1101.5136] [INSPIRE].

  30. J. Mei, On the general Kerr/CFT correspondence in arbitrary dimensions, JHEP 04 (2012) 113 [arXiv:1202.4156] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Carlip, Symmetries, horizons and black hole entropy, Gen. Rel. Grav. 39 (2007) 1519 [Int. J. Mod. Phys. D 17 (2008) 659] [arXiv:0705.3024] [INSPIRE].

  32. S.L. Braunstein, S. Pirandola and K. Życzkowski, Entangled black holes as ciphers of hidden information, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S.N. Solodukhin, Entanglement entropy of black holes, Living Rev. Rel. 14 (2011) 8 [arXiv:1104.3712] [INSPIRE].

    Google Scholar 

  35. J.W. York, Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].

    Article  ADS  Google Scholar 

  36. G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, J. Fluctuating black hole horizons. J. High Energ. Phys. 2013, 195 (2013). https://doi.org/10.1007/JHEP10(2013)195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)195

Keywords

Navigation