Skip to main content
Log in

Holographic realization of gauge mediated supersymmetry breaking

Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The general gauge mediation scenario provides a framework in which properties of a visible sector with soft supersymmetry breaking are computed from current correlation functions in the supersymmetry breaking hidden sector. In this paper we will use holography to model strongly coupled hidden sectors by weakly curved geometries and describe how the current correlators relevant for general gauge mediation are computed by holographic methods. We illustrate the general setup by a toy example which captures most of the relevant features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  2. P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03 (2009) 016 [arXiv:0812.3668] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. Z. Komargodski and N. Seiberg, μ and general gauge mediation, JHEP 03 (2009) 072 [arXiv:0812.3900] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  6. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  8. F. Benini et al., Holographic gauge mediation, JHEP 12 (2009) 031 [arXiv:0903.0619] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. P. McGuirk, G. Shiu and Y. Sumitomo, Holographic gauge mediation via strongly coupled messengers, Phys. Rev. D 81 (2010) 026005 [arXiv:0911.0019] [INSPIRE].

    ADS  Google Scholar 

  10. P. McGuirk, Hidden-sector current-current correlators in holographic gauge mediation, Phys. Rev. D 85 (2012) 045025 [arXiv:1110.5075] [INSPIRE].

    ADS  Google Scholar 

  11. K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].

    Article  ADS  Google Scholar 

  14. I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. A. Kehagias and K. Sfetsos, On running couplings in gauge theories from type IIB supergravity, Phys. Lett. B 454 (1999) 270 [hep-th/9902125] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. S.S. Gubser, Dilaton driven confinement, hep-th/9902155 [INSPIRE].

  18. D.Z. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].

    ADS  Google Scholar 

  19. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Taylor, Holographic realization of general gauge mediation, talk given at New Perspectives in String Theory, Florence Italy, 13 May 2009, and at the Fifth Regional Meeting on String Theory, Crete, 28 Jun-6 Jul 2009, http://hep.physics.uoc.gr/mideast5/talks/Saturday/Taylor.pdf.

  23. R. Argurio, M. Bertolini, L. Di Pietro, F. Porri and D. Redigolo, Holographic correlators for general gauge mediation, JHEP 08 (2012) 086 [arXiv:1205.4709] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Skenderis.

Additional information

ArXiv ePrint: 1205.4677

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skenderis, K., Taylor, M. Holographic realization of gauge mediated supersymmetry breaking. J. High Energ. Phys. 2012, 28 (2012). https://doi.org/10.1007/JHEP09(2012)028

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)028

Keywords

Navigation