Skip to main content
Log in

On stability and transport of cold holographic matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use gauge-gravity duality to study the stability of zero-temperature, finite baryon density states of \( \mathcal{N} = 4 \) supersymmetric SU(N c ) Yang-Mills theory coupled to a single massive fundamental-representation \( \mathcal{N} = 2 \) hypermultiplet in the large-N c and large-coupling limits. In particular, we study the spectrum of mesons. The dual description is a probe D7-brane in anti-de Sitter space with a particular configuration of worldvolume fields. The meson spectrum is dual to the spectrum of fluctuations of worldvolume fields about that configuration. We use a combination of analytical and numerical techniques to compute the spectrum, including a special numerical technique designed to deal with singular points in the fluctuations’ equations of motion. Despite circumstantial evidence that the system might be unstable, such as a finite entropy density at zero temperature and the existence of instabilities in similar theories, we find no evidence of any instabilities, at least for the ranges of frequency and momenta that we consider. We discover a pole on the imaginary frequency axis in a scalar meson two-point function, similar to the diffusive mode in the two-point function of a conserved charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [SPIRES].

    Article  ADS  Google Scholar 

  2. S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge U.K. (1999).

    Google Scholar 

  3. P. Coleman and A. Schofield, Quantum Criticality, Nature 433 (2005) 226 [cond-mat/0503002].

    Article  ADS  Google Scholar 

  4. P. Gegenwart, Q. Si and F. Steglich, Quantum Criticality in Heavy-fermion Metals, Nat. Phys. 4 (2008) 186.

    Article  Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  7. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  8. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  9. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  10. J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein gravity, Phys. Lett. B 699 (2011) 301 [arXiv:1011.5912] [SPIRES].

    ADS  Google Scholar 

  11. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  12. M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at \( \sqrt {{{s_{NN}}}} = 200 \) GeV, Phys. Rev. C 78 (2008) 034915 [arXiv:0804.4015] [SPIRES].

    ADS  Google Scholar 

  13. L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [SPIRES].

  16. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [SPIRES].

    ADS  Google Scholar 

  17. P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Ann. Phys. 144 (1982) 249 [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [SPIRES].

    Article  ADS  Google Scholar 

  20. M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [SPIRES].

    Article  ADS  Google Scholar 

  21. D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [arXiv:1009.3094] [SPIRES].

    Article  ADS  Google Scholar 

  22. M. Cvetič et al., Embedding AdS black holes in ten and eleven dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [SPIRES].

    Article  ADS  Google Scholar 

  23. A. Buchel and J.T. Liu, Gauged supergravity from type IIB string theory on Y(p,q) manifolds, Nucl. Phys. B 771 (2007) 93 [hep-th/0608002] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  24. J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with M-theory duals, JHEP 02 (2007) 049 [hep-th/0611219] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  25. J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein Reductions for General Supersymmetric AdS Solutions, Phys. Rev. D 76 (2007) 126007 [arXiv:0707.2315] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Karch and A. O’Bannon, Holographic Thermodynamics at Finite Baryon Density: Some Exact Results, JHEP 11 (2007) 074 [arXiv:0709.0570] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Karch, D.T. Son and A.O. Starinets, Zero Sound from Holography, arXiv:0806.3796 [SPIRES].

  31. M. Kulaxizi and A. Parnachev, Comments on Fermi Liquid from Holography, Phys. Rev. D 78 (2008) 086004 [arXiv:0808.3953] [SPIRES].

    ADS  Google Scholar 

  32. A. Karch, M. Kulaxizi and A. Parnachev, Notes on Properties of Holographic Matter, JHEP 11 (2009) 017 [arXiv:0908.3493] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [SPIRES].

    Article  ADS  Google Scholar 

  34. K. Jensen, More Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. D 82 (2010) 046005 [arXiv:1006.3066] [SPIRES].

    ADS  Google Scholar 

  35. N. Evans, K. Jensen and K.-Y. Kim, Non Mean-Field Quantum Critical Points from Holography, Phys. Rev. D 82 (2010) 105012 [arXiv:1008.1889] [SPIRES].

    ADS  Google Scholar 

  36. D.V. Deryagin, D.Y. Grigoriev and V.A. Rubakov, Standing wave ground state in high density, zero temperature QCD at large-N c , Int. J. Mod. Phys. A 7 (1992) 659 [SPIRES].

    ADS  Google Scholar 

  37. E. Shuster and D.T. Son, On finite-density QCD at large-N c , Nucl. Phys. B 573 (2000) 434 [hep-ph/9905448] [SPIRES].

    Article  ADS  Google Scholar 

  38. S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [SPIRES].

    ADS  Google Scholar 

  39. H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [SPIRES].

    ADS  Google Scholar 

  40. H. Ooguri and C.-S. Park, Spatially Modulated Phase in Holographic quark-gluon Plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  41. C.A.B. Bayona, K. Peeters and M. Zamaklar, A non-homogeneous ground state of the low-temperature Sakai-Sugimoto model, JHEP 06 (2011) 092 [arXiv:1104.2291] [SPIRES].

    Article  ADS  Google Scholar 

  42. A. Donos and J.P. Gauntlett, Holographic striped phases, arXiv:1106.2004 [SPIRES].

  43. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, arXiv:1106.3883 [SPIRES].

  44. K.-Y. Kim, B. Sahoo and H.-U. Yee, Holographic chiral magnetic spiral, JHEP 10 (2010) 005 [arXiv:1007.1985] [SPIRES].

    Article  ADS  Google Scholar 

  45. I. Kirsch, Spectroscopy of fermionic operators in AdS/CFT, JHEP 09 (2006) 052 [hep-th/0607205] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  46. M. Ammon, J. Erdmenger, M. Kaminski and A. O’Bannon, Fermionic Operator Mixing in Holographic p-wave Superfluids, JHEP 05 (2010) 053 [arXiv:1003.1134] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [SPIRES].

    ADS  Google Scholar 

  48. A. Karch, J. Maciejko and T. Takayanagi, Holographic fractional topological insulators in 2 + 1 and 1 + 1 dimensions, Phys. Rev. D 82 (2010) 126003 [arXiv:1009.2991] [SPIRES].

    ADS  Google Scholar 

  49. K. Jensen, A. Karch and E.G. Thompson, A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density, JHEP 05 (2010) 015 [arXiv:1002.2447] [SPIRES].

    Article  ADS  Google Scholar 

  50. P.M. Chesler and A. Vuorinen, Heavy flavor diffusion in weakly coupled N = 4 super Yang-Mills theory, JHEP 11 (2006) 037 [hep-ph/0607148] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  51. E.W. Leaver, Quasinormal modes of Reissner-Nordstrom black holes, Phys. Rev. D 41 (1990) 2986 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  52. F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [SPIRES].

    ADS  Google Scholar 

  53. P. Benincasa, Universality of Holographic Phase Transitions and Holographic Quantum Liquids, arXiv:0911.0075 [SPIRES].

  54. K.-Y. Kim and I. Zahed, Baryonic Response of Dense Holographic QCD, JHEP 12 (2008) 075 [arXiv:0811.0184] [SPIRES].

    Article  ADS  Google Scholar 

  55. J. Erdmenger, M. Kaminski and F. Rust, Holographic vector mesons from spectral functions at finite baryon or isospin density, Phys. Rev. D 77 (2008) 046005 [arXiv:0710.0334] [SPIRES].

    ADS  Google Scholar 

  56. R.C. Myers and A. Sinha, The fast life of holographic mesons, JHEP 06 (2008) 052 [arXiv:0804.2168] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  57. J. Mas, J.P. Shock, J. Tarrio and D. Zoakos, Holographic Spectral Functions at Finite Baryon Density, JHEP 09 (2008) 009 [arXiv:0805.2601] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  58. J. Erdmenger, M. Kaminski, P. Kerner and F. Rust, Finite baryon and isospin chemical potential in AdS/CFT with flavor, JHEP 11 (2008) 031 [arXiv:0807.2663] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  59. J. Mas, J.P. Shock and J. Tarrio, A note on conductivity and charge diffusion in holographic flavour systems, JHEP 01 (2009) 025 [arXiv:0811.1750] [SPIRES].

    Article  ADS  Google Scholar 

  60. J. Mas, J.P. Shock and J. Tarrio, Holographic Spectral Functions in Metallic AdS/CFT, JHEP 09 (2009) 032 [arXiv:0904.3905] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  61. M. Kaminski et al., Quasinormal modes of massive charged flavor branes, JHEP 03 (2010) 117 [arXiv:0911.3544] [SPIRES].

    Article  ADS  Google Scholar 

  62. M. Kaminski, K. Landsteiner, J. Mas, J.P. Shock and J. Tarrio, Holographic Operator Mixing and Quasinormal Modes on the Brane, JHEP 02 (2010) 021 [arXiv:0911.3610] [SPIRES].

    Article  ADS  Google Scholar 

  63. J.P. Shock and J. Tarrio, A note on the velocity of holographic long-lived mesons, Phys. Lett. B 688 (2010) 244 [arXiv:0912.2954] [SPIRES].

    ADS  Google Scholar 

  64. K. Rajagopal and F. Wilczek, The condensed matter physics of QCD, to appear in Festschrift in honor of B.L. Ioffe. At the Frontier of Particle Physics/Handbook of QCD: Chapter 35, M. Shifman eds.,World Scientific, Singapore [hep-ph/0011333] [SPIRES].

  65. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].

    Article  ADS  Google Scholar 

  66. E. Witten, Small Instantons in String Theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  67. M.R. Douglas, Branes within branes, hep-th/9512077 [SPIRES].

  68. J. Erdmenger, J. Grosse and Z. Guralnik, Spectral flow on the Higgs branch and AdS/CFT duality, JHEP 06 (2005) 052 [hep-th/0502224] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  69. R. Apreda, J. Erdmenger, N. Evans and Z. Guralnik, Strong coupling effective Higgs potential and a first order thermal phase transition from AdS/CFT duality, Phys. Rev. D 71 (2005) 126002 [hep-th/0504151] [SPIRES].

    ADS  Google Scholar 

  70. M. Ammon, J. Erdmenger, S.Höhne, D.Lüst and R. Meyer, Fayet-Iliopoulos Terms in AdS/CFT with Flavour, JHEP 07 (2008) 068 [arXiv:0805.1917] [SPIRES].

    Article  ADS  Google Scholar 

  71. H.-Y. Chen, K. Hashimoto and S. Matsuura, Towards a Holographic Model of Color-Flavor Locking Phase, JHEP 02 (2010) 104 [arXiv:0909.1296] [SPIRES].

    ADS  Google Scholar 

  72. F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, D3-D7 quark-gluon Plasmas at Finite Baryon Density, JHEP 04 (2011) 060 [arXiv:1101.3560] [SPIRES].

    Article  ADS  Google Scholar 

  73. V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [SPIRES].

    Article  ADS  Google Scholar 

  74. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic Description of the Phase Diagram of a Chiral Symmetry Breaking Gauge Theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [SPIRES].

    Article  ADS  Google Scholar 

  75. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].

    ADS  Google Scholar 

  76. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: Holographic Pion Superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [SPIRES].

    Article  ADS  Google Scholar 

  77. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  78. J. Erdmenger, V. Grass, P. Kerner and T.H. Ngo, Holographic Superfluidity in Imbalanced Mixtures, JHEP 08 (2011) 037 [arXiv:1103.4145] [SPIRES].

    Article  ADS  Google Scholar 

  79. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  80. A. Núñez and A.O. Starinets, AdS/CFT correspondence, quasinormal modes and thermal correlators in N = 4 SYM, Phys. Rev. D 67 (2003) 124013 [hep-th/0302026] [SPIRES].

    ADS  Google Scholar 

  81. M. Edalati, J.I. Jottar and R.G. Leigh, Shear Modes, Criticality and Extremal Black Holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  82. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  83. O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  84. J. Erdmenger, Z. Guralnik and I. Kirsch, Four-Dimensional Superconformal Theories with Interacting Boundaries or Defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  85. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, Phys. Lett. B 698 (2011) 91 [arXiv:1003.2694] [SPIRES].

    ADS  Google Scholar 

  86. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II: Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Müller.

Additional information

ArXiv ePrint: 1108.1798

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammon, M., Erdmenger, J., Lin, S. et al. On stability and transport of cold holographic matter. J. High Energ. Phys. 2011, 30 (2011). https://doi.org/10.1007/JHEP09(2011)030

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)030

Keywords

Navigation