Skip to main content
Log in

New AdS solitons and brane worlds with compact extra-dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct new static, asymptotically AdS solutions where the conformal infinity is the product of Minkowski spacetime M n and a sphere S m. Both globally regular, soliton-type solutions and black hole solutions are considered. The black holes can be viewed as natural AdS generalizations of the Schwarzschild black branes in Kaluza-Klein theory. The solitons provide new brane-world models with compact extra-dimensions. Different from the Randall-Sundrum single-brane scenario, a Schwarzschild black hole on the Ricci flat part of these branes does not lead to a naked singularity in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  3. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. J.P. Gauntlett, J.B. Gutowski and N.V. Suryanarayana, A deformation of AdS 5 × S 5, Class. Quant. Grav. 21 (2004) 5021 [hep-th/0406188] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. D. Astefanesei, R.B. Mann and E. Radu, Nut charged space-times and closed timelike curves on the boundary, JHEP 01 (2005) 049 [hep-th/0407110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. S. Surya, K. Schleich and D.M. Witt, Phase transitions for flat AdS black holes, Phys. Rev. Lett. 86 (2001) 5231 [hep-th/0101134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B 79 (1974) 276 [SPIRES].

    Article  ADS  Google Scholar 

  9. A.M. Polyakov, Particle spectrum in quantum field theory, JETP Lett. 20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430] [SPIRES].

    ADS  Google Scholar 

  10. R.F. Dashen, B. Hasslacher and A. Neveu, Nonperturbative methods and extended hadron models in field theory. 3. Four-dimensional nonabelian models, Phys. Rev. D 10 (1974) 4138 [SPIRES].

    ADS  Google Scholar 

  11. F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev. D 30 (1984) 2212 [SPIRES].

    ADS  Google Scholar 

  12. M.S. Volkov and D.V. Gal’tsov, Gravitating non-Abelian solitons and black holes with Yang-Mills fields, Phys. Rept. 319 (1999) 1 [hep-th/9810070] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Fefferman and C.R. Graham, Conformal invariants, in Élie Cartan et les Mathématiques d’Aujourd’hui, Astérisque, France (1985) pg. 95.

  14. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. K. Copsey and G.T. Horowitz, Gravity dual of gauge theory on S 2 × S 1 × R, JHEP 06 (2006) 021 [hep-th/0602003] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. R.B. Mann, E. Radu and C. Stelea, Black string solutions with negative cosmological constant, JHEP 09 (2006) 073 [hep-th/0604205] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. Y. Brihaye, E. Radu and C. Stelea, Black strings with negative cosmological constant: Inclusion of electric charge and rotation, Class. Quant. Grav. 24 (2007) 4839 [hep-th/0703046] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A. Bernamonti et al., Black strings in AdS 5, JHEP 01 (2008) 061 [arXiv:0708.2402] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. Y. Brihaye, T. Delsate and E. Radu, On the stability of AdS black strings, Phys. Lett. B 662 (2008) 264 [arXiv:0710.4034] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. T. Delsate, New stable phase of non uniform black strings in AdS d , JHEP 12 (2008) 085 [arXiv:0808.2752] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. Y. Brihaye, J. Kunz and E. Radu, From black strings to black holes: nuttier and squashed AdS 5 solutions, JHEP 08 (2009) 025 [arXiv:0904.1566] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. E. Radu and D.H. Tchrakian, Gravitating Yang-Mills fields in all dimensions, in Perspectives in Mathematical Sciences, Yisong Yang, Xinchu Fu and Jinqiao Duan eds., World Scientific (2010) pg. 211 arXiv:0907.1452 [SPIRES].

  24. K. Skenderis, Asymptotically anti-de Sitter spacetimes and their stress energy tensor, Int. J. Mod. Phys. A 16 (2001) 740 [hep-th/0010138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. I.S. Booth and R.B. Mann, Moving observers, non-orthogonal boundaries and quasilocal energy, Phys. Rev. D 59 (1999) 064021 [gr-qc/9810009] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. Y.-P. Hu, Tension term, interchange symmetry and the analogy of energy and tension laws of the AdS soliton solution, JHEP 05 (2009) 096 [arXiv:0904.1250] [SPIRES].

    Article  ADS  Google Scholar 

  29. U.J.C.Ascher and R.D. Russell, A collocation solver for mixed order systems of boundary value problems, Math. of Comp. 33 (1979) 659.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Leblond, R.C. Myers and D.J. Winters, Consistency conditions for brane worlds in arbitrary dimensions, JHEP 07 (2001) 031 [hep-th/0106140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Chodos and E. Poppitz, Warp factors and extended sources in two transverse dimensions, Phys. Lett. B 471 (1999) 119 [hep-th/9909199] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. P. Kanti, R. Madden and K.A. Olive, A 6 − D brane world model, Phys. Rev. D 64 (2001) 044021 [hep-th/0104177] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. J. Louko and D.L. Wiltshire, Brane worlds with bolts, JHEP 02 (2002) 007 [hep-th/0109099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. Y. Brihaye, A. Chakrabarti and D.H. Tchrakian, Particle-like solutions to higher order curvature Einstein-Yang-Mills systems in d dimensions, Class. Quant. Grav. 20 (2003) 2765 [hep-th/0202141] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. E. Radu and D.H. Tchrakian, Gravitating Yang–Mills fields in all dimensions, arXiv:0907.1452 [SPIRES].

  37. G.W. Gibbons and P.K. Townsend, Self-gravitating Yang monopoles in all dimensions, Class. Quant. Grav. 23 (2006) 4873 [hep-th/0604024] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. S.H. Mazharimousavi and M. Halilsoy, Einstein-Yang-Mills black hole solution in higher dimensions by the Wu-Yang Ansatz, Phys. Lett. B 659 (2008) 471 [arXiv:0801.1554] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. D.H. Tchrakian, Spherically symmetric gauge field configurations with finite action in 4 p-dimensions (p = integer), Phys. Lett. B 150 (1985) 360 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. P. Candelas and S. Weinberg, Calculation of gauge couplings and compact circumferences from selfconsistent dimensional reduction, Nucl. Phys. B 237 (1984) 397 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. T. Tanaka, Classical black hole evaporation in Randall-Sundrum infinite braneworld, Prog. Theor. Phys. Suppl. 148 (2003) 307 [gr-qc/0203082] [SPIRES].

    Article  ADS  Google Scholar 

  43. R. Emparan, A. Fabbri and N. Kaloper, Quantum black holes as holograms in AdS braneworlds, JHEP 08 (2002) 043 [hep-th/0206155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. H. Yoshino, On the existence of a static black hole on a brane, JHEP 01 (2009) 068 [arXiv:0812.0465] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. H. Kudoh, T. Tanaka and T. Nakamura, Small localized black holes in braneworld: Formulation and numerical method, Phys. Rev. D 68 (2003) 024035 [gr-qc/0301089] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. A. Chamblin, S.W. Hawking and H.S. Reall, Brane-world black holes, Phys. Rev. D 61 (2000) 065007 [hep-th/9909205] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. R. Gregory, Black string instabilities in anti-de Sitter space, Class. Quant. Grav. 17 (2000) L125 [hep-th/0004101] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  50. R.B. Mann, Topological black holes: Outside looking in, gr-qc/9709039 [SPIRES].

  51. J.P.S. Lemos, Rotating toroidal black holes in anti-de Sitter spacetimes and their properties, in Proceedings of 10th National Astronomy and Astrophysics Meeting, Lisbon, Portugal, 27-28 July 2000, J.P.S. Lemos, A. Mourao, L. Tedodoro and R. Ugoccioni eds., World Scientific (2001) [gr-qc/0011092] [SPIRES].

  52. G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. S.W. Hawking in General relativity. An Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.S.A. (1979).

    Google Scholar 

  54. A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. T. Harmark, V. Niarchos and N.A. Obers, Instabilities of black strings and branes, Class. Quant. Grav. 24 (2007) R1 [hep-th/0701022] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. S.S. Gubser and I. Mitra, Instability of charged black holes in anti-de Sitter space, hep-th/0009126 [SPIRES].

  57. S.S. Gubser and I. Mitra, The evolution of unstable black holes in anti-de Sitter space, JHEP 08 (2001) 018 [hep-th/0011127] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Radu.

Additional information

ArXiv ePrint: 1006.3290

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleihaus, B., Kunz, J. & Radu, E. New AdS solitons and brane worlds with compact extra-dimensions. J. High Energ. Phys. 2010, 47 (2010). https://doi.org/10.1007/JHEP09(2010)047

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)047

Keywords

Navigation