Skip to main content
Log in

Neutrino masses and Higgs vacuum stability

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The Standard Model electroweak vacuum has been found to be metastable, with the true stable vacuum given by a large, phenomenologically unacceptable vacuum expectation value ≈ M P . Moreover, it may be unstable in an inflationary universe. Motivated by the necessity of physics beyond the Standard Model and to accommodate non-zero neutrino masses, we investigate vacuum stability within type-II seesaw and left-right symmetric models. Our analysis is performed by solving the renormalisation group equations, carefully taking into account the relevant threshold corrections. We demonstrate that a phenomenologically viable left-right symmetric model can be constructed by matching it with the SM at one-loop. In both models we demonstrate the existence of a large area of parameter space where the Higgs vacuum is absolutely stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  4. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Kobakhidze and A. Spencer-Smith, Electroweak Vacuum (In)Stability in an Inflationary Universe, Phys. Lett. B 722 (2013) 130 [arXiv:1301.2846] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Espinosa, G. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum Stability, Perturbativity and Scalar Singlet Dark Matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].

    Article  ADS  Google Scholar 

  8. O. Lebedev and H.M. Lee, Higgs Portal Inflation, Eur. Phys. J. C 71 (2011) 1821 [arXiv:1105.2284] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex Scalar Singlet Dark Matter: Vacuum Stability and Phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].

    ADS  Google Scholar 

  11. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    Article  ADS  Google Scholar 

  12. O. Lebedev, On Stability of the Electroweak Vacuum and the Higgs Portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  14. K. Kannike, Vacuum Stability Conditions From Copositivity Criteria, Eur. Phys. J. C 72 (2012) 2093 [arXiv:1205.3781] [INSPIRE].

    Article  ADS  Google Scholar 

  15. L.A. Anchordoqui, I. Antoniadis, H. Goldberg, X. Huang, D. Lüst et al., Vacuum Stability of Standard Model ++, JHEP 02 (2013) 074 [arXiv:1208.2821] [INSPIRE].

    Article  ADS  Google Scholar 

  16. K. Allison, Dark matter, singlet extensions of the nuMSM and symmetries, JHEP 05 (2013) 009 [arXiv:1210.6852] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Khan, S. Goswami and S. Roy, Vacuum Stability constraints on the minimal singlet TeV Seesaw Model, arXiv:1212.3694 [INSPIRE].

  18. W. Chao, J.-H. Zhang and Y. Zhang, Vacuum Stability and Higgs Diphoton Decay Rate in the Zee-Babu Model, JHEP 06 (2013) 039 [arXiv:1212.6272] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Goudelis, B. Herrmann and O. St al, Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC, arXiv:1303.3010 [INSPIRE].

  20. X.-G. He, H. Phoon, Y. Tang and G. Valencia, Unitarity and vacuum stability constraints on the couplings of color octet scalars, JHEP 05 (2013) 026 [arXiv:1303.4848] [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  22. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theory and Baryon Number in the Universe, KEK report 79-18, pg. 95, 1979.

  23. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., pg. 315, North Holland, Amsterdam, 1979.

  24. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Casas, V. Di Clemente, A. Ibarra and M. Quirós, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [INSPIRE].

    ADS  Google Scholar 

  26. W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022 [arXiv:1203.3825] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Chakrabortty, M. Das and S. Mohanty, Constraints on TeV scale Majorana neutrino phenomenology from the Vacuum Stability of the Higgs, Mod. Phys. Lett. A 28 (2013) 1350032 [arXiv:1207.2027] [INSPIRE].

    Article  ADS  Google Scholar 

  28. R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

    Google Scholar 

  29. I. Gogoladze, N. Okada and Q. Shafi, Higgs Boson Mass Bounds in the Standard Model with Type III and Type I Seesaw, Phys. Lett. B 668 (2008) 121 [arXiv:0805.2129] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C.-S. Chen and Y. Tang, Vacuum stability, neutrinos and dark matter, JHEP 04 (2012) 019 [arXiv:1202.5717] [INSPIRE].

    Article  ADS  Google Scholar 

  31. B. He, N. Okada and Q. Shafi, 125 GeV Higgs, Type III Seesaw and Gauge-Higgs Unification, Phys. Lett. B 716 (2012) 197 [arXiv:1205.4038] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  33. M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U (1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

    ADS  Google Scholar 

  35. G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  36. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  37. I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass bounds in a type-II seesaw model with triplet scalars, Phys. Rev. D 78 (2008) 085005 [arXiv:0802.3257] [INSPIRE].

    ADS  Google Scholar 

  38. C. Arina, J.-O. Gong and N. Sahu, Unifying darko-lepto-genesis with scalar triplet inflation, Nucl. Phys. B 865 (2012) 430 [arXiv:1206.0009] [INSPIRE].

    Article  ADS  Google Scholar 

  39. E.J. Chun, H.M. Lee and P. Sharma, Vacuum Stability, Perturbativity, EWPD and Higgs-to-diphoton rate in Type II Seesaw Models, JHEP 11 (2012) 106 [arXiv:1209.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  40. W. Chao, M. Gonderinger and M.J. Ramsey-Musolf, Higgs Vacuum Stability, Neutrino Mass and Dark Matter, Phys. Rev. D 86 (2012) 113017 [arXiv:1210.0491] [INSPIRE].

    ADS  Google Scholar 

  41. P. Bhupal Dev, D.K. Ghosh, N. Okada and I. Saha, 125 GeV Higgs Boson and the Type-II Seesaw Model, JHEP 03 (2013) 150 [Erratum ibid. 1305 (2013) 049] [arXiv:1301.3453] [INSPIRE].

  42. Z. Berezhiani, The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A NewApproach to Quark and Lepton Masses, Phys. Lett. B 129 (1983) 99 [INSPIRE].

    Article  ADS  Google Scholar 

  43. Z. Berezhiani, Horizontal Symmetry and Quark - Lepton Mass Spectrum: The SU(5) × SU(3)-h Model, Phys. Lett. B 150 (1985) 177 [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Dimopoulos, Natural Generation of Fermion Masses, Phys. Lett. B 129 (1983) 417 [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Davidson and K.C. Wali, Universal Seesaw Mechanism?, Phys. Rev. Lett. 59 (1987) 393 [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Davidson and K.C. Wali, Family mass hierarchy from universal Seesaw mechanism, Phys. Rev. Lett. 60 (1988) 1813 [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Chang and R.N. Mohapatra, Small and Calculable Dirac Neutrino Mass, Phys. Rev. Lett. 58 (1987) 1600 [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Rajpoot, Seesaw Masses for Quarks and Leptons in an Ambidextrous Electroweak Interaction Model, Mod. Phys. Lett. A 2 (1987) 307 [Erratum ibid. A 2 (1987) 541] [INSPIRE].

  49. A. Davidson, S. Ranfone and K.C. Wali, Quark masses and mixing angles from universal Seesaw mechanism, Phys. Rev. D 41 (1990) 208 [INSPIRE].

    ADS  Google Scholar 

  50. Z. Berezhiani and R. Rattazzi, Universal seesaw and radiative quark mass hierarchy, Phys. Lett. B 279 (1992) 124 [INSPIRE].

    Article  ADS  Google Scholar 

  51. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  52. S. Weinberg, Effective Gauge Theories, Phys. Lett. B 91 (1980) 51 [INSPIRE].

    Article  ADS  Google Scholar 

  53. M.A. Schmidt, Renormalization group evolution in the type-I+ II seesaw model, Phys. Rev. D 76 (2007) 073010 [Erratum ibid. D 85 (2012) 099903] [arXiv:0705.3841] [INSPIRE].

    Google Scholar 

  54. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, M. Peyranere et al., The Higgs Potential in the Type II Seesaw Model, Phys. Rev. D 84 (2011) 095005 [arXiv:1105.1925] [INSPIRE].

    ADS  Google Scholar 

  55. M. Holthausen, K.S. Lim and M. Lindner, Planck scale Boundary Conditions and the Higgs Mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  56. R. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].

    ADS  Google Scholar 

  57. G. Senjanović, Neutrino mass: From LHC to grand unification, Riv. Nuovo Cim. 034 (2011) 1 [INSPIRE].

    Google Scholar 

  58. C. Burgess, Introduction to Effective Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].

    Article  ADS  Google Scholar 

  59. R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].

    ADS  Google Scholar 

  60. ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working, SLD Electroweak, SLD Heavy Flavour groups, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  61. M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  62. M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  63. M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Spencer-Smith.

Additional information

ArXiv ePrint: 1305.7283

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobakhidze, A., Spencer-Smith, A. Neutrino masses and Higgs vacuum stability. J. High Energ. Phys. 2013, 36 (2013). https://doi.org/10.1007/JHEP08(2013)036

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)036

Keywords

Navigation