Skip to main content
Log in

130 GeV gamma ray line and enhanced Higgs di-photon rate from Triplet-Singlet extended MSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose an economic extension of minimal supersymmetric standard model with a SU(2) singlet and Y = 0 triplet, which can explain (i) the 125GeV Higgs boson without fine tuning, (ii) the 130 GeV γ-ray line seen at Fermi-LAT, (as well as a second photon line at 114 GeV)(iii) an enhanced Higgs di-photon decay rate seen by ATLAS, while being consistent with dark matter relic density and recent XENON 100 exclusion limits on spin-independent direct detection cross-section. We obtain the required cross-section of 10−27 cm 3 s −1 for the 130 GeV γ-ray flux through the resonant annihilation of dark matter via pseudoscalar triplet Higgs of mass ∼260GeV. The dark matter is predominantly binohiggsino which has large couplings with photons (through higgsino) and gives correct relic density (through bino). We get the enhanced Higgs diphoton decay rate, R γγ ≃ 1.224 dominantly contributed by the light chargino-loops, which can account for the reported excess seen in the h → γγ channel by ATLAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].

    ADS  Google Scholar 

  2. S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    Article  ADS  Google Scholar 

  4. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  5. A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: a pMSSM study of Higgs searches, \( B_s^0\to {\mu^{+}}{\mu^{-}} \) and dark matter direct detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M.A. Ajaib, I. Gogoladze, F. Nasir and Q. Shafi, Revisiting mGMSB in light of a 125 GeV Higgs, Phys. Lett. B 713 (2012) 462 [arXiv:1204.2856] [INSPIRE].

    Article  ADS  Google Scholar 

  10. F. Brummer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM, JHEP 08 (2012) 089 [arXiv:1204.5977] [INSPIRE].

    Article  ADS  Google Scholar 

  11. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  12. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  13. M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].

    Article  ADS  Google Scholar 

  14. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. G.G. Ross and K. Schmidt-Hoberg, The fine-tuning of the generalised NMSSM, Nucl. Phys. B 862 (2012) 710 [arXiv:1108.1284] [INSPIRE].

    Article  ADS  Google Scholar 

  16. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Z. Kang, J. Li and T. Li, On naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024 [arXiv:1201.5305] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].

    ADS  Google Scholar 

  21. U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].

    Google Scholar 

  22. S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Espinosa and M. Quirós, Higgs triplets in the supersymmetric standard model, Nucl. Phys. B 384 (1992) 113 [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Espinosa and M. Quirós, On Higgs boson masses in nonminimal supersymmetric standard models, Phys. Lett. B 279 (1992) 92 [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Di Chiara and K. Hsieh, Triplet extended supersymmetric standard model, Phys. Rev. D 78 (2008) 055016 [arXiv:0805.2623] [INSPIRE].

    ADS  Google Scholar 

  26. K. Agashe, A. Azatov, A. Katz and D. Kim, Improving the tunings of the MSSM by adding triplets and singlet, Phys. Rev. D 84 (2011) 115024 [arXiv:1109.2842] [INSPIRE].

    ADS  Google Scholar 

  27. T. Basak and S. Mohanty, Triplet-singlet extension of the MSSM with a 125 GeV Higgs and dark matter, Phys. Rev. D 86 (2012) 075031 [arXiv:1204.6592] [INSPIRE].

    ADS  Google Scholar 

  28. T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi LAT search for internal bremsstrahlung signatures from dark matter annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].

    Article  ADS  Google Scholar 

  29. C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi Large Area Telescope, JCAP 08 (2012) 007 [arXiv:1204.2797] [INSPIRE].

    Article  ADS  Google Scholar 

  30. E. Tempel, A. Hektor and M. Raidal, Fermi 130 GeV γ-ray excess and dark matter annihilation in sub-haloes and in the Galactic centre, JCAP 09 (2012) 032 [Addendum ibid. 1211 (2012) A01] [arXiv:1205.1045] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Bringmann and C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].

    Article  Google Scholar 

  32. LAT collaboration, M. Ackermann et al., Fermi LAT search for dark matter in γ-ray lines and the inclusive photon spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].

    ADS  Google Scholar 

  33. M.R. Buckley and D. Hooper, Implications of a 130 GeV γ-ray line for dark matter, Phys. Rev. D 86 (2012) 043524 [arXiv:1205.6811] [INSPIRE].

    ADS  Google Scholar 

  34. J.M. Cline, 130 GeV dark matter and the Fermi γ-ray line, Phys. Rev. D 86 (2012) 015016 [arXiv:1205.2688] [INSPIRE].

    ADS  Google Scholar 

  35. B. Kyae and J.-C. Park, 130 GeV Fermi γ-ray line from dark matter decay, Phys. Lett. B 718 (2013) 1425 [arXiv:1205.4151] [INSPIRE].

    Article  ADS  Google Scholar 

  36. L. Wang and X.-F. Han, 130 GeV gamma-ray line and enhancement of h → γγ in the Higgs triplet model plus a scalar dark matter, Phys. Rev. D 87 (2013) 015015 [arXiv:1209.0376] [INSPIRE].

    ADS  Google Scholar 

  37. Rencontres de Moriond 2013 Electroweak Session, March 2–9, La Thuile, Italy (2013), https://indico.in2p3.fr/conferenceDisplay.py?confId=7411.

  38. Rencontres de Moriond 2013 QCD Session, March 9–16, CERN, Switzerland (2013), http://moriond.in2p3.fr/QCD/2013/MorQCD13Prog.html.

  39. J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  41. K.-Y. Choi, H.M. Lee and O. Seto, Vector Higgs-portal dark matter and Fermi-LAT gamma ray line, arXiv:1304.0966 [INSPIRE].

  42. Z. Bern, P. Gondolo and M. Perelstein, Neutralino annihilation into two photons, Phys. Lett. B 411 (1997) 86 [hep-ph/9706538] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Bergstrom and P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B 504 (1997) 27 [hep-ph/9706232] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Kumar and P. Sandick, Gamma rays from bino-like dark matter in the MSSM, arXiv:1303.2384 [INSPIRE].

  45. T. Bringmann, L. Bergstrom and J. Edsjo, New γ-ray contributions to supersymmetric dark matter annihilation, JHEP 01 (2008) 049 [arXiv:0710.3169] [INSPIRE].

    Article  ADS  Google Scholar 

  46. L. Bergstrom, T. Bringmann, M. Eriksson and M. Gustafsson, Gamma rays from heavy neutralino dark matter, Phys. Rev. Lett. 95 (2005) 241301 [hep-ph/0507229] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Birkedal, K.T. Matchev, M. Perelstein and A. Spray, Robust γ ray signature of WIMP dark matter, hep-ph/0507194 [INSPIRE].

  48. B. Shakya, A 130 GeV γ ray signal from supersymmetry, arXiv:1209.2427 [INSPIRE].

  49. M. Carena, S. Gori, I. Low, N. Shah and C. Wagner, Vacuum stability and Higgs diphoton decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D. Das, U. Ellwanger and P. Mitropoulos, A 130 GeV photon line from dark matter annihilation in the NMSSM, JCAP 08 (2012) 003 [arXiv:1206.2639] [INSPIRE].

    Article  ADS  Google Scholar 

  51. Z. Kang, T. Li, J. Li and Y. Liu, Brightening the (130 GeV) γ-ray line, arXiv:1206.2863 [INSPIRE].

  52. G. Chalons, M.J. Dolan and C. McCabe, Neutralino dark matter and the Fermi γ-ray lines, JCAP 02 (2013) 016 [arXiv:1211.5154] [INSPIRE].

    Article  ADS  Google Scholar 

  53. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

    Article  ADS  Google Scholar 

  54. K. Schmidt-Hoberg and F. Staub, Enhanced h → γγ rate in MSSM singlet extensions, JHEP 10 (2012) 195 [arXiv:1208.1683] [INSPIRE].

    Article  ADS  Google Scholar 

  55. K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi, Higgs mixing and diphoton rate enhancement in NMSSM models, JHEP 02 (2013) 090 [arXiv:1211.0875] [INSPIRE].

    Article  ADS  Google Scholar 

  56. K. Schmidt-Hoberg, F. Staub and M.W. Winkler, Enhanced diphoton rates at Fermi and the LHC, JHEP 01 (2013) 124 [arXiv:1211.2835] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Delgado, G. Nardini and M. Quirós, Large diphoton Higgs rates from supersymmetric triplets, Phys. Rev. D 86 (2012) 115010 [arXiv:1207.6596] [INSPIRE].

    ADS  Google Scholar 

  58. Z. Kang, Y. Liu and G.-Z. Ning, Highlights of supersymmetric hypercharge ±1 triplets, arXiv:1301.2204 [INSPIRE].

  59. L. Wang and X.-F. Han, LHC diphoton Higgs signal in the Higgs triplet model with Y = 0, arXiv:1303.4490 [INSPIRE].

  60. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  61. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  62. A. Rajaraman, T.M. Tait and D. Whiteson, Two lines or not two lines? That is the question of γ ray spectra, JCAP 09 (2012) 003 [arXiv:1205.4723] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Su and D.P. Finkbeiner, Strong evidence for γ-ray line emission from the inner galaxy, arXiv:1206.1616 [INSPIRE].

  64. P. Ullio and L. Bergstrom, Neutralino annihilation into a photon and a Z boson, Phys. Rev. D 57 (1998) 1962 [hep-ph/9707333] [INSPIRE].

    ADS  Google Scholar 

  65. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  67. WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, arXiv:1212.5226 [INSPIRE].

  68. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  69. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    Article  ADS  Google Scholar 

  70. J.R. Ellis, A. Ferstl and K.A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [INSPIRE].

    Article  ADS  Google Scholar 

  71. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2012-109 (2012).

  72. CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  74. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].

    Google Scholar 

  75. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanushree Basak.

Additional information

ArXiv ePrint: 1304.6856

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basak, T., Mohanty, S. 130 GeV gamma ray line and enhanced Higgs di-photon rate from Triplet-Singlet extended MSSM. J. High Energ. Phys. 2013, 20 (2013). https://doi.org/10.1007/JHEP08(2013)020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)020

Keywords

Navigation