Skip to main content
Log in

Higher-order renormalization of graphene many-body theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the many-body theory of graphene Dirac quasiparticles interacting via the long-range Coulomb potential, taking as a starting point the ladder approximation to different vertex functions. We test in this way the low-energy behavior of the electron system beyond the simple logarithmic dependence of electronic correlators on the high-energy cutoff, which is characteristic of the large-N approximation. We show that the graphene many-body theory is perfectly renormalizable in the ladder approximation, as all higher powers in the cutoff dependence can be absorbed into the redefinition of a finite number of parameters (namely, the Fermi velocity and the weight of the fields) that remain free of infrared divergences even at the charge neutrality point. We illustrate this fact in the case of the vertex for the current density, where a complete cancellation between the cutoff dependences of vertex and electron self-energy corrections becomes crucial for the preservation of the gauge invariance of the theory. The other potentially divergent vertex corresponds to the staggered (sublattice odd) charge density, which is made cutoff independent by a redefinition in the scale of the density operator. This allows to compute a well-defined, scale invariant anomalous dimension to all orders in the ladder series, which becomes singular at a value of the interaction strength marking the onset of chiral symmetry breaking (and gap opening) in the Dirac field theory. The critical coupling we obtain in this way matches with great accuracy the value found with a quite different method, based on the resolution of the gap equation, thus reassuring the predictability of our renormalization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666.

    Article  ADS  Google Scholar 

  2. K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197 [cond-mat/0509330] [INSPIRE].

    Article  ADS  Google Scholar 

  3. Y. Zhang, Y.-W. Tan, H.L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and and Berrys phase in graphene, Nature 438 (2005) 201 [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Castro Neto, F. Guinea, N. Peres, K. Novoselov and A. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  5. V.M. Pereira, J. Nilsson and A.H. Castro Neto, Coulomb impurity problem in graphene, Phys. Rev. Lett. 99 (2007) 166802.

    Article  ADS  Google Scholar 

  6. M.M. Fogler, D.S. Novikov and B.I. Shklovskii, Screening of a hypercritical charge in graphene, Phys. Rev. B 76 (2007) 233402.

    ADS  Google Scholar 

  7. A.V. Shytov, M.I. Katsnelson and L.S. Levitov, Vacuum polarization and screening of supercritical impurities in graphene, Phys. Rev. Lett. 99 (2007) 236801.

    Article  ADS  Google Scholar 

  8. I.S. Terekhov, A.I. Milstein, V.N. Kotov and O.P. Sushkov, Screening of Coulomb impurities in graphene, Phys. Rev. Lett. 100 (2008) 076803.

    Article  ADS  Google Scholar 

  9. J. González, F. Guinea and M.A.H. Vozmediano, Unconventional quasiparticle lifetime in graphite, Phys. Rev. Lett. 77 (1996) 3589.

    Article  ADS  Google Scholar 

  10. S. Yu et al., Energy dependence of electron lifetime in graphite observed with femtosecond photoemission spectroscopy, Phys. Rev. Lett. 76 (1996) 483.

    Article  ADS  Google Scholar 

  11. J. González, F. Guinea and M.A.H. Vozmediano, Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (a renormalization group approach), Nucl. Phys. B 424 (1994) 595 [hep-th/9311105] [INSPIRE].

    Article  ADS  Google Scholar 

  12. D.C. Elias et al., Dirac cones reshaped by interaction effects in suspended graphene, Nature Phys. 7 (2011) 701.

    Article  ADS  Google Scholar 

  13. J. González, F. Guinea and M.A.H. Vozmediano, Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction, Phys. Rev. B 59 (1999) R2474.

    ADS  Google Scholar 

  14. I.L. Aleiner, D.E. Kharzeev and A.M. Tsvelik, Spontaneous symmetry breakings in graphene subjected to in-plane magnetic field, Phys. Rev. B 76 (2007) 195415 [arXiv:0708.0394] [INSPIRE].

    ADS  Google Scholar 

  15. J.E. Drut and D.T. Son, Renormalization group flow of quartic perturbations in graphene: strong coupling and large-N limits, Phys. Rev. B 77 (2008) 075115 [arXiv:0710.1315] [INSPIRE].

    ADS  Google Scholar 

  16. S. Gangadharaiah, A.M. Farid and E.G. Mishchenko, Charge response function and a novel plasmon mode in graphene, Phys. Rev. Lett. 100 (2008) 166802.

    Article  ADS  Google Scholar 

  17. D.V. Khveshchenko, Ghost excitonic insulator transition in layered graphite, Phys. Rev. Lett. 87 (2001) 246802 [INSPIRE].

    Article  ADS  Google Scholar 

  18. E.V. Gorbar, V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Magnetic field driven metal insulator phase transition in planar systems, Phys. Rev. B 66 (2002) 045108 [cond-mat/0202422] [INSPIRE].

    ADS  Google Scholar 

  19. O. Vafek and M.J. Case, Renormalization group approach to two-dimensional Coulomb interacting Dirac fermions with random gauge potential, Phys. Rev. B 77 (2008) 033410.

    ADS  Google Scholar 

  20. D.V. Khveshchenko, Massive Dirac fermions in single-layer graphene, J. Phys.: Condens. Matter 21 (2009) 075303.

    Article  ADS  Google Scholar 

  21. I.F. Herbut, V. Juričić and O. Vafek, Relativistic Mott criticality in graphene, Phys. Rev. B 80 (2009) 075432 [arXiv:0904.1019] [INSPIRE].

    ADS  Google Scholar 

  22. V. Juričić, I.F. Herbut and G.W. Semenoff, Coulomb interaction at the metal-insulator critical point in graphene, Phys. Rev. B 80 (2009) 081405 [arXiv:0906.3513] [INSPIRE].

    ADS  Google Scholar 

  23. J.E. Drut and T.A. Lähde, Is graphene in vacuum an insulator?, Phys. Rev. Lett. 102 (2009) 026802 [arXiv:0807.0834] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.E. Drut and T.A. Lähde, Critical exponents of the semimetal-insulator transition in graphene: a Monte Carlo study, Phys. Rev. B 79 (2009) 241405 [arXiv:0905.1320] [INSPIRE].

    ADS  Google Scholar 

  25. S.J. Hands and C.G. Strouthos, Quantum critical behaviour in a graphene-like model, Phys. Rev. B 78 (2008) 165423 [arXiv:0806.4877] [INSPIRE].

    ADS  Google Scholar 

  26. W. Armour, S.J. Hands and C.G. Strouthos, Monte Carlo simulation of the semimetal-insulator phase transition in monolayer graphene, Phys. Rev. B 81 (2010) 125105 [arXiv:0910.5646] [INSPIRE].

    ADS  Google Scholar 

  27. O.V. Gamayun, E.V. Gorbar and V.P. Gusynin, Supercritical Coulomb center and excitonic instability in graphene, Phys. Rev. B 80 (2009) 165429.

    ADS  Google Scholar 

  28. J. Wang, H.A. Fertig and G. Murthy, Critical behavior in graphene with Coulomb interactions, Phys. Rev. Lett. 104 (2010) 186401.

    Article  ADS  Google Scholar 

  29. O.V. Gamayun, E. Gorbar and V. Gusynin, Gap generation and semimetal-insulator phase transition in graphene, Phys. Rev. B 81 (2010) 075429 [arXiv:0911.4878] [INSPIRE].

    ADS  Google Scholar 

  30. J. González, Renormalization group approach to chiral symmetry breaking in graphene, Phys. Rev. B 82 (2010) 155404 [arXiv:1007.3705] [INSPIRE].

    ADS  Google Scholar 

  31. J. González, Electron self-energy effects on chiral symmetry breaking in graphene, Phys. Rev. B 85 (2012) 085420 [arXiv:1103.3650] [INSPIRE].

    ADS  Google Scholar 

  32. P. Ramond, Field theory: a modern primer, Benjamin/Cummings, Reading U.S.A. (1981), see chapter IV.

  33. V. Juričić, O. Vafek and I.F. Herbut, Conductivity of interacting massless Dirac particles in graphene: Collisionless regime, Phys. Rev. B 82 (2010) 235402 [arXiv:1009.3269] [INSPIRE].

    ADS  Google Scholar 

  34. R.D. Pisarski, Chiral symmetry breaking in three-dimensional electrodynamics, Phys. Rev. D 29 (1984) 2423 [INSPIRE].

    ADS  Google Scholar 

  35. T. Appelquist, D. Nash and L.C.R. Wijewardhana, Critical behavior in (2 + 1)-dimensional QED, Phys. Rev. Lett. 60 (1988) 2575 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. E. Dagotto, J.B. Kogut and A. Kocić, A computer simulation of chiral symmetry breaking in (2 + 1)-dimensional QED with N flavors, Phys. Rev. Lett. 62 (1989) 1083 [INSPIRE].

    Article  ADS  Google Scholar 

  37. G.W. Semenoff and L.C.R. Wijewardhana, Dynamical mass generation in 3D four fermion theory, Phys. Rev. Lett. 63 (1989) 2633 [INSPIRE].

    Article  ADS  Google Scholar 

  38. G.W. Semenoff and L.C.R. Wijewardhana, Dynamical violation of parity and chiral symmetry in 3D four Fermi theory, Phys. Rev. D 45 (1992) 1342 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. D.J. Amit and V. Mart´ın-Mayor, Field theory, the renormalization group, and critical phenomena, World Scientific, Singapore (2005), see chapters 6 and 8.

  40. F. de Juan and H.A. Fertig, Power law Kohn anomalies and the excitonic transition in graphene, Solid State Commun. 152 (2012) 1460.

    Article  ADS  Google Scholar 

  41. J. Sabio, F. Sols and F. Guinea, Variational approach to the excitonic phase transition in graphene, Phys. Rev. B 82 (2010) 121413 [arXiv:1007.3471] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. González.

Additional information

ArXiv ePrint: 1204.4673

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, J. Higher-order renormalization of graphene many-body theory. J. High Energ. Phys. 2012, 27 (2012). https://doi.org/10.1007/JHEP08(2012)027

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)027

Keywords

Navigation