Skip to main content
Log in

Parity violation in graviton non-gaussianity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study parity violation in graviton non-gaussianity generated during inflation. We develop a useful formalism to calculate graviton non-gaussianity. Using this formalism, we explicitly calculate the parity violating part of the bispectrum for primordial gravitational waves in the exact de Sitter spacetime and prove that no parity violation appears in the non-gaussianity. We also extend the analysis to slow-roll inflation and find that the parity violation of the bispectrum is proportional to the slow-roll parameter. We argue that parity violating non-gaussianity can be tested by the CMB. Our results are also useful for calculating three-point function of the stress tensor in the non-conformal field theory through the gravity/field theory correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Seto, Prospects for direct detection of circular polarization of gravitational-wave background, Phys. Rev. Lett. 97 (2006) 151101 [astro-ph/0609504] [SPIRES].

    Article  ADS  Google Scholar 

  2. N. Seto and A. Taruya, Measuring a parity violation signature in the early universe via ground-based laser interferometers, Phys. Rev. Lett. 99 (2007) 121101 [arXiv:0707.0535] [SPIRES].

    Article  ADS  Google Scholar 

  3. N. Seto and A. Taruya, Polarization analysis of gravitational-wave backgrounds from the correlation signals of ground-based interferometers: measuring a circular-polarization mode, Phys. Rev. D 77 (2008) 103001 [arXiv:0801.4185] [SPIRES].

    ADS  Google Scholar 

  4. S. Saito, K. Ichiki and A. Taruya, Probing polarization states of primordial gravitational waves with CMB anisotropies, JCAP 09 (2007) 002 [arXiv:0705.3701] [SPIRES].

    ADS  Google Scholar 

  5. V. Gluscevic and M. Kamionkowski, Testing parity-violating mechanisms with cosmic microwave background experiments, Phys. Rev. D 81 (2010) 123529 [arXiv:1002.1308] [SPIRES].

    ADS  Google Scholar 

  6. C.R. Contaldi, J. Magueijo and L. Smolin, Anomalous CMB polarization and gravitational chirality, Phys. Rev. Lett. 101 (2008) 141101 [arXiv:0806.3082] [SPIRES].

    Article  ADS  Google Scholar 

  7. T. Takahashi and J. Soda, Chiral primordial gravitational waves from a Lifshitz point, Phys. Rev. Lett. 102 (2009) 231301 [arXiv:0904.0554] [SPIRES].

    Article  ADS  Google Scholar 

  8. A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity-violating interactions, Phys. Rev. Lett. 83 (1999) 1506 [astro-ph/9812088] [SPIRES].

    Article  ADS  Google Scholar 

  9. K. Choi, J.-C. Hwang and K.W. Hwang, String theoretic axion coupling and the evolution of cosmic structures, Phys. Rev. D 61 (2000) 084026 [hep-ph/9907244] [SPIRES].

    ADS  Google Scholar 

  10. S. Alexander and J. Martin, Birefringent gravitational waves and the consistency check of inflation, Phys. Rev. D 71 (2005) 063526 [hep-th/0410230] [SPIRES].

    ADS  Google Scholar 

  11. S.H.S. Alexander, Is cosmic parity violation responsible for the anomalies in the WMAP data?, Phys. Lett. B 660 (2008) 444 [hep-th/0601034] [SPIRES].

    ADS  Google Scholar 

  12. D.H. Lyth, C. Quimbay and Y. Rodriguez, Leptogenesis and tensor polarisation from a gravitational Chern-Simons term, JHEP 03 (2005) 016 [hep-th/0501153] [SPIRES].

    Article  ADS  Google Scholar 

  13. M. Satoh, S. Kanno and J. Soda, Circular polarization of primordial gravitational waves in string-inspired inflationary cosmology, Phys. Rev. D 77 (2008) 023526 [arXiv:0706.3585] [SPIRES].

    ADS  Google Scholar 

  14. M. Satoh and J. Soda, Higher curvature corrections to primordial fluctuations in slow-roll inflation, JCAP 09 (2008) 019 [arXiv:0806.4594] [SPIRES].

    ADS  Google Scholar 

  15. M. Satoh, Slow-roll inflation with the Gauss-Bonnet and Chern-Simons corrections, JCAP 11 (2010) 024 [arXiv:1008.2724] [SPIRES].

    ADS  Google Scholar 

  16. L. Sorbo, Parity violation in the cosmic microwave background from a pseudoscalar inflaton, JCAP 06 (2011) 003 [arXiv:1101.1525] [SPIRES].

    ADS  Google Scholar 

  17. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [SPIRES].

    Article  ADS  Google Scholar 

  18. M. Kamionkowski and T. Souradeep, The odd-parity CMB bispectrum, Phys. Rev. D 83 (2011) 027301 [arXiv:1010.4304] [SPIRES].

    ADS  Google Scholar 

  19. J.M. Maldacena and G.L. Pimentel, On graviton non-gaussianities during inflation, arXiv:1104.2846 [SPIRES].

  20. E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  21. M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [SPIRES].

    ADS  Google Scholar 

  22. P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the universe: stable violation of the null energy condition and non-standard cosmologies, JHEP 12 (2006) 080 [hep-th/0606090] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Weinberg, Effective field theory for inflation, Phys. Rev. D 77 (2008) 123541 [arXiv:0804.4291] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  25. D. Grumiller and N. Yunes, How do black holes spin in Chern-Simons modified gravity?, Phys. Rev. D 77 (2008) 044015 [arXiv:0711.1868] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. A. Taruya, Probing anisotropies of gravitational-wave backgrounds with a space-based interferometer III: reconstruction of a high-frequency skymap, Phys. Rev. D 74 (2006) 104022 [gr-qc/0607080] [SPIRES].

    ADS  Google Scholar 

  27. P. McFadden and K. Skenderis, Cosmological 3-point correlators from holography, JCAP 06 (2011) 030 [arXiv:1104.3894] [SPIRES].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Nozawa.

Additional information

ArXiv ePrint: 1106.3228

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soda, J., Kodama, H. & Nozawa, M. Parity violation in graviton non-gaussianity. J. High Energ. Phys. 2011, 67 (2011). https://doi.org/10.1007/JHEP08(2011)067

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)067

Keywords

Navigation