Skip to main content
Log in

Next-to-leading order QCD effects and the top quark mass measurements at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

It is anticipated that a number of techniques to measure the top quark mass at the LHC will yield m top with uncertainties of about 0.5−1 percent. These uncertainties are mostly theoretical; they are usually estimated using parton shower Monte Carlo programs whose reliability at this level of precision is difficult to assess. The goal of this paper is to contrast those estimates with the results of NLO QCD computations for a few observables, often discussed in the context of high-precision top quark mass measurements at the LHC. In particular, we study the NLO QCD corrections to the invariant mass distribution of a charged lepton and a B-meson in lepton+jets channels. In the dilepton channel we investigate the invariant mass distribution of a charged lepton and a b-jet, the average energy of the two leptons and the average energy of the b-jets from top decays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KTeV collaboration, E. Abouzaid et al., Dispersive analysis of K Lμ3 and K Le3 scalar and vector form factors using KTeV data, Phys. Rev. D 81 (2010) 052001 [arXiv:0912.1291] [SPIRES].

    ADS  Google Scholar 

  2. CDF collaboration, T. Aaltonen et al., Top quark mass measurement using m T2 in the dilepton channel at CDF, Phys. Rev. D 81 (2010) 031102 [arXiv:0911.2956] [SPIRES].

    ADS  Google Scholar 

  3. CDF collaboration, T. Aaltonen et al., Measurement of the top quark mass using the invariant mass of lepton pairs in soft muon b-tagged events, Phys. Rev. D 80 (2009) 051104 [arXiv:0906.5371] [SPIRES].

    ADS  Google Scholar 

  4. CDF collaboration, T. Aaltonen et al., First simultaneous measurement of the top quark mass in the lepton + jets and dilepton channels at CDF, Phys. Rev. D 79 (2009) 092005 [arXiv:0809.4808] [SPIRES].

    ADS  Google Scholar 

  5. CDF collaboration, T. Aaltonen et al., Top quark mass measurement in the lepton plus jets channel using a modified matrix element method, Phys. Rev. D 79 (2009) 072001 [arXiv:0812.4469] [SPIRES].

    ADS  Google Scholar 

  6. CDF and D0 collaboration, L. Brigliadori, Precision determination of the top quark mass, Nuovo Cim. 032C (2009) 265 [SPIRES].

    Google Scholar 

  7. D0 collaboration, V.M. Abazov et al., Measurement of the top quark mass in final states with two leptons, Phys. Rev. D 80 (2009) 092006 [arXiv:0904.3195] [SPIRES].

    ADS  Google Scholar 

  8. ATLAS collaboration, Expected performance of the ATLAS experiment: detector, trigger and physics, CERN-OPEN-2008-20

  9. CMS collaboration, CMS physics TDR: physics performance, J. Phys. G 34 (2007) 995.

    ADS  Google Scholar 

  10. M. Beneke et al., Top quark physics, hep-ph/0003033 [SPIRES].

  11. D. Chakraborty, J. Konigsberg and D. Rainwater, Review of top quark physics, Ann. Rev. Nucl. Part. Sci. 53 (2003) 301 [hep-ph/0303092] [SPIRES].

    Article  ADS  Google Scholar 

  12. W. Wagner, Top quark physics in hadron collisions , Rept. Prog. Phys. 68 (2005) 2409.

    Article  ADS  Google Scholar 

  13. A. Quadt, Top quark physics at hadron colliders, Eur. Phys. J. C 48 (2006) 835 [SPIRES].

    Article  ADS  Google Scholar 

  14. W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [SPIRES].

    ADS  Google Scholar 

  15. G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].

    Article  ADS  Google Scholar 

  16. V.A. Khoze, A.D. Martin and M.G. Ryskin, On the role of hard rescattering in exclusive diffractive Higgs production, JHEP 05 (2006) 036 [hep-ph/0602247] [SPIRES].

    Article  ADS  Google Scholar 

  17. P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [SPIRES].

    Article  ADS  Google Scholar 

  18. W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [SPIRES].

    Article  ADS  Google Scholar 

  19. K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production and decay at hadron colliders, JHEP 08 (2009) 049 [arXiv:0907.3090] [SPIRES].

    Article  ADS  Google Scholar 

  20. W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [SPIRES].

    Article  ADS  Google Scholar 

  21. J.M. Campbell and R.K. Ellis, Radiative corrections to Z b anti-b production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [SPIRES].

    ADS  Google Scholar 

  22. U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [SPIRES].

    ADS  Google Scholar 

  23. A. Kharchilava, Top mass determination in leptonic final states with J/ψ, Phys. Lett. B 476 (2000) 73 [hep-ph/9912320] [SPIRES].

    ADS  Google Scholar 

  24. G. Corcella, M.L. Mangano and M.H. Seymour, Jet activity in t anti-t events and top mass reconstruction at hadron colliders, JHEP 07 (2000) 004 [hep-ph/0004179] [SPIRES].

    Article  ADS  Google Scholar 

  25. G. Corcella and F. Mescia, A phenomenological study of bottom-quark fragmentation in top-quark decay, Eur. Phys. J. C 65 (2010) 171.

    Article  ADS  Google Scholar 

  26. R. Chierici and A. Dierlamm, Determination of the top mass with exclusive events tWblvJΨX, CMS-NOTE-2006-058

  27. B. Mele and P. Nason, Next-to-leading QCD calculation of the heavy quark fragmentation function, Phys. Lett. B 245 (1990) 635 [SPIRES].

    ADS  Google Scholar 

  28. G. Corcella and A.D. Mitov, Bottom quark fragmentation in top quark decay, Nucl. Phys. B 623 (2002) 247 [hep-ph/0110319] [SPIRES].

    Article  ADS  Google Scholar 

  29. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].

    Article  ADS  Google Scholar 

  30. J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [SPIRES].

    ADS  Google Scholar 

  31. ALEPH collaboration, A. Heister et al., Study of the fragmentation of b quarks into B mesons at the Z peak, Phys. Lett. B 512 (2001) 30 [hep-ex/0106051] [SPIRES].

    ADS  Google Scholar 

  32. SLD collaboration, K. Abe et al., Precise measurement of the b-quark fragmentation function in Z0 boson decays, Phys. Rev. Lett. 84 (2000) 4300 [hep-ex/9912058] [SPIRES].

    Article  ADS  Google Scholar 

  33. V.S. Fadin, V.A. Khoze and A.D. Martin, Interference radiative phenomena in the production of heavy unstable particles, Phys. Rev. D 49 (1994) 2247 [SPIRES].

    ADS  Google Scholar 

  34. K. Melnikov and O.I. Yakovlev, Top near threshold: all α s corrections are trivial, Phys. Lett. B 324 (1994) 217 [hep-ph/9302311] [SPIRES].

    ADS  Google Scholar 

  35. K. Melnikov and O.I. Yakovlev, Final state interaction in the production of heavy unstable particles, Nucl. Phys. B 471 (1996) 90 [hep-ph/9501358] [SPIRES].

    Article  ADS  Google Scholar 

  36. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].

    Article  ADS  Google Scholar 

  37. P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [SPIRES].

    ADS  Google Scholar 

  38. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Uncertainties of predictions from parton distributions. 1: experimental errors, Eur. Phys. J. C 28 (2003) 455 [hep-ph/0211080] [SPIRES].

    ADS  Google Scholar 

  39. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].

    Article  ADS  Google Scholar 

  40. S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].

    Article  ADS  Google Scholar 

  41. S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Biswas.

Additional information

ArXiv ePrint: 1006.0910

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Melnikov, K. & Schulze, M. Next-to-leading order QCD effects and the top quark mass measurements at the LHC. J. High Energ. Phys. 2010, 48 (2010). https://doi.org/10.1007/JHEP08(2010)048

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)048

Keywords

Navigation