Skip to main content
Log in

Holographic studies of quasi-topological gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Quasi-topological gravity is a new gravitational theory including curvaturecubed interactions and for which exact black hole solutions were constructed. In a holographic framework, classical quasi-topological gravity can be thought to be dual to the large N c limit of some non-supersymmetric but conformal gauge theory. We establish various elements of the AdS/CFT dictionary for this duality. This allows us to infer physical constraints on the couplings in the gravitational theory. Further we use holography to investigate hydrodynamic aspects of the dual gauge theory. In particular, we find that the minimum value of the shear-viscosity-to-entropy-density ratio for this model is η/s ≃ 0.4140/(4π).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  6. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Buchel, Resolving disagreement for eta/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to eta/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].

    ADS  Google Scholar 

  10. A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].

    ADS  Google Scholar 

  11. A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  12. A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295c–298c [arXiv:0907.4798] [SPIRES].

    ADS  Google Scholar 

  13. D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].

    Article  ADS  Google Scholar 

  14. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    Article  ADS  Google Scholar 

  16. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  17. A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7/CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].

    Article  Google Scholar 

  19. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES]

    Article  ADS  Google Scholar 

  20. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].

    Article  ADS  Google Scholar 

  21. X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].

    Article  ADS  Google Scholar 

  22. R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].

    ADS  Google Scholar 

  23. R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].

    ADS  Google Scholar 

  24. M.J. Duff, Observations on conformal anomalies, Nucl. Phys. B 125 (1977) 334 [SPIRES].

    Article  ADS  Google Scholar 

  25. S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. X.-H. Ge, S.-J. Sin, S.-F. Wu and G.-H. Yang, Shear viscosity and instability from third order Lovelock gravity, Phys. Rev. D 80 (2009) 104019 [arXiv:0905.2675] [SPIRES].

    ADS  Google Scholar 

  28. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic lovelock gravities and black holes, JHEP 06 (2010) 008 [arXiv:0912.1877] [SPIRES].

    Article  Google Scholar 

  29. X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. F.-W. Shu, The quantum viscosity bound in lovelock gravity, Phys. Lett. B 685 (2010) 325 [arXiv:0910.0607] [SPIRES].

    ADS  Google Scholar 

  31. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, arXiv:1006.1263 [SPIRES].

  32. R.C. Myers and A. Sinha, Anomalies, central charges and holography, to appear.

  33. C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. A. Schwimmer and S. Theisen, Universal features of holographic anomalies, JHEP 10 (2003) 001 [hep-th/0309064] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, arXiv:1003.5357 [SPIRES].

  37. I. Fouxon, G. Betschart and J.D. Bekenstein, The bound on viscosity and the generalized second law of thermodynamics, Phys. Rev. D 77 (2008) 024016 [arXiv:0710.1429] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Arutyunov and S. Frolov, Three-point Green function of the stress-energy tensor in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 026004 [hep-th/9901121] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [SPIRES].

    Article  ADS  Google Scholar 

  41. I. Gullu, T.C. Sisman and B. Tekin, Born-Infeld extension of new massive gravity, Class. Quant. Grav. 27 (2010) 162001 [arXiv:1003.3935] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function, arXiv:1003.4773 [SPIRES].

  43. J. Oliva and S. Ray, A classification of six derivative lagrangians of gravity and static spherically symmetric solutions, arXiv:1004.0737 [SPIRES].

  44. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. V.K. Dobrev, E.K. Khristova, V.B. Petkova and D.B. Stamenov, Conformal covariant operator product expansion of two spin 1/2 fields, Bulg. J. Phys. 1 (1974) 42.

    Google Scholar 

  47. V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic analysis on the N-dimensional Lorentz group and its application to conformal quantum field theory, in Lecture Notes in Physics 63 (1977) 280 [SPIRES].

  48. I.T. Todorov, M.C. Mintchev and V.B. Petkova, Conformal invariance in quantum field theory, Sc. Norm. Sup., Pisa Italy (1978), pg. 273 [SPIRES].

  49. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Ann. Phys. 231 (1994) 311 [hep-th/9307010] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. D. Anselmi, M.T. Grisaru and A. Johansen, A critical behaviour of anomalous currents, electric-magnetic universality and CFT 4, Nucl. Phys. B 491 (1997) 221 [hep-th/9601023] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. N. Banerjee and S. Dutta, Shear viscosity to entropy density ratio in six derivative gravity, JHEP 07 (2009) 024 [arXiv:0903.3925] [SPIRES].

    Article  ADS  Google Scholar 

  52. J. Erdmenger and H. Osborn, Conserved currents and the energy-momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. S.S. Gubser and I.R. Klebanov, Absorption by branes and Schwinger terms in the world volume theory, Phys. Lett. B 413 (1997) 41 [hep-th/9708005] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. .T. Horowitz and N. Itzhaki, Black holes, shock waves and causality in the AdS/CFT correspondence, JHEP 02 (1999) 010 [hep-th/9901012] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. G.T. Horowitz and A.R. Steif, Space-time singularities in string theory, Phys. Rev. Lett. 64 (1990) 260 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. J.I. Latorre and H. Osborn, Modified weak energy condition for the energy momentum tensor in quantum field theory, Nucl. Phys. B 511 (1998) 737 [hep-th/9703196] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. L. Brillouin, Wave propagation and group velocity, Academic Press (1960).

  58. R. Fox, C.G. Kuper and S.G. Lipson, Faster-than-light group velocities and causality violation, Proc. Roy. Soc. Lond. A 316 (1970) 515.

    ADS  Google Scholar 

  59. E. Krotscheck and W. Kundt, Causality criteria, Commun. Math. Phys. 60 (1978) 171.

    Article  MathSciNet  ADS  Google Scholar 

  60. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  61. N. Banerjee and S. Dutta, Higher derivative corrections to shear viscosity from graviton’s effective coupling, JHEP 03 (2009) 116 [arXiv:0901.3848] [SPIRES].

    Article  ADS  Google Scholar 

  62. R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [SPIRES].

    Article  ADS  Google Scholar 

  64. R.C. Myers, A.O. Starinets and R.M. Thomson, Holographic spectral functions and diffusion constants for fundamental matter, JHEP 11 (2007) 091 [arXiv:0706.0162] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. K.M. Case, Singular potentials, Phys. Rev. 80 (1950) 797.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  67. V. de Alfaro, S. Fubini and G. Furlan, Conformal invariance in quantum mechanics, Nuovo Cim. A 34 (1976) 569 [SPIRES].

    Article  ADS  Google Scholar 

  68. S.R. Beane et al., Singular potentials and limit cycles, Phys. Rev. A 64 (2001) 042103 [quant-ph/0010073] [SPIRES].

    ADS  Google Scholar 

  69. L.D. Landau, E.M. Lifshitz, Quantum mechanics: non-relativistic theory, Pergamon Press (1977).

  70. M. Kulaxizi and A. Parnachev, Supersymmetry constraints in holographic gravities, arXiv:0912.4244 [SPIRES].

  71. T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [SPIRES].

    Article  ADS  Google Scholar 

  72. F. Sannino, Dynamical Stabilization of the Fermi scale: phase diagram of strongly coupled theories for (Minimal) walking technicolor and unparticles, arXiv:0804.0182 [SPIRES].

  73. F. Sannino, Phase Diagrams of Strongly Interacting Theories, arXiv:1003.0289 [SPIRES].

  74. F. Sannino, Conformal dynamics for TeV physics and cosmology, arXiv:0911.0931 [SPIRES].

  75. E. Poppitz and M. Ünsal, Conformality or confinement: (IR)relevance of topological excitations, JHEP 09 (2009) 050 [arXiv:0906.5156] [SPIRES].

    Article  ADS  Google Scholar 

  76. E. Poppitz and M. Ünsal, Conformality or confinement (II): one-flavor CFTs and mixed-representation QCD, JHEP 12 (2009) 011 [arXiv:0910.1245] [SPIRES].

    Article  ADS  Google Scholar 

  77. U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [SPIRES].

    Article  Google Scholar 

  78. U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [SPIRES].

    Article  Google Scholar 

  79. M. Jarvinen and F. Sannino, Holographic conformal window - a bottom up approach, JHEP 05 (2010) 041 [arXiv:0911.2462] [SPIRES].

    Article  ADS  Google Scholar 

  80. F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFT’s with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  81. R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].

    ADS  Google Scholar 

  82. M. Paulos, Lovelock theories, holography and the fate of the viscosity bound.,unpublished.

  83. X.O. Camanho, J.D. Edelstein and M. Paulos, in preparation.

  84. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  85. D. Lovelock, Divergence-free tensorial concomitants, Aequationes Math. 4 (1970) 127.

    Article  MATH  MathSciNet  Google Scholar 

  86. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  87. M. Henneaux, C. Teitelboim and J. Zanelli, Quantum mechanics for multivalued Hamiltonians, Phys. Rev. A 36 (1987) 4417 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  88. C. Teitelboim and J. Zanelli, Dimensionally continued topological gravitation theory in Hamiltonian form, Class. Quantum Grav. 4 (1987) L125.

    Article  MathSciNet  ADS  Google Scholar 

  89. J. Alanen and K. Kajantie, Thermodynamics of a field theory with infrared fixed point from gauge/gravity duality, Phys. Rev. D 81 (2010) 046003 [arXiv:0912.4128] [SPIRES].

    ADS  Google Scholar 

  90. J. Alanen, K. Kajantie and K. Tuominen, Thermodynamics of quasi conformal theories from gauge/gravity duality, arXiv:1003.5499 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aninda Sinha.

Additional information

ArXiv ePrint: arXiv:1004.2055

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, R.C., Paulos, M.F. & Sinha, A. Holographic studies of quasi-topological gravity. J. High Energ. Phys. 2010, 35 (2010). https://doi.org/10.1007/JHEP08(2010)035

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)035

Keywords

Navigation