Skip to main content
Log in

Atmospheric sterile neutrinos

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study production of sterile neutrinos in the atmosphere and their detection at Super-Kamiokande. A sterile neutrino in the mass range \( 1\;{\text{MeV}} \lesssim {M_{\text{N}}} \lesssim {1}0{5}\;{\text{MeV}} \) is produced by muon or pion decay, and decays to an electron-positron pair and an active neutrino. Such a decay of the sterile neutrino leaves two electron-like Cherenkov rings in the detector. We estimate the sterile neutrino flux from the well-established active neutrino fluxes and study the number of the decay events in the detector. The upper bounds for the active-sterile mixings are obtained by comparing the 2e-like events from the sterile neutrino decays and the observed data by Super-Kamiokande. The upper bound for the muon type mixing Θμ is found to be \( {\left| {{\Theta_{\mu }}} \right|^2} \lesssim 5 \times {10^{{ - 5}}} \) for \( 20\;{\text{MeV}} \lesssim {M_N} \lesssim 80\;{\text{MeV}} \), which is significantly loosened compared to the previous estimation. We demonstrate that the opening angle and the total energy of the rings may serve as diagnostic tools to discover the sterile neutrinos in further data accumulation and future upgraded facilities. The directional asymmetry of the events is a sensitive measure of the diminishment of the sterile neutrino flux due to the decays on the way to the detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  2. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, Tsukuba Japan, 13-14 Feb 1979, O. Sawada and S. Sugamoto eds., pg. 95 [KEK Report KEK-79-18-95] [Prog. Theor. Phys. 64 (1980) 1103] [INSPIRE].

  3. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewenhuizen and D.Z. Freedman eds., North Holland, Amsterdam Netherlands (1980) [INSPIRE].

  4. P. Ramond, The family group in grand unified theories, talk given at the International Symposium on Fundamentals of Quantum Theory and Quantum Field Theory, Palm Coast U.S.A., 25 Feb-2 Mar 1979 [Preprint CALT-68-709] [hep-ph/9809459] [INSPIRE].

  5. S.L. Glashow, The future of elementary particle physics, in Proceedings of the Cargèse Summer Institute on Quarks and Leptons, Cargèse France, 9-29 Jul 1979, M. Lévy et al. eds., Plenum Press, New York U.S.A. (1980).

  6. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

    Article  ADS  Google Scholar 

  9. X.-D. Shi and G.M. Fuller, A new dark matter candidate: nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A.D. Dolgov and S.H. Hansen, Massive sterile neutrinos as warm dark matter, Astropart. Phys. 16 (2002) 339 [hep-ph/0009083] [INSPIRE].

    Article  ADS  Google Scholar 

  11. K. Abazajian, G.M. Fuller and M. Patel, Sterile neutrino hot, warm and cold dark matter, Phys. Rev. D 64 (2001) 023501 [astro-ph/0101524] [INSPIRE].

    ADS  Google Scholar 

  12. K. Abazajian, G.M. Fuller and W.H. Tucker, Direct detection of warm dark matter in the X-ray, Astrophys. J. 562 (2001) 593 [astro-ph/0106002] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Asaka, M. Laine and M. Shaposhnikov, On the hadronic contribution to sterile neutrino production, JHEP 06 (2006) 053 [hep-ph/0605209] [INSPIRE].

    Article  ADS  Google Scholar 

  14. T. Asaka, M. Laine and M. Shaposhnikov, Lightest sterile neutrino abundance within the νMSM, JHEP 01 (2007) 091 [hep-ph/0612182] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Laine and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry, JCAP 06 (2008) 031 [arXiv:0804.4543] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Kusenko and G. Segre, Neutral current induced neutrino oscillations in a supernova, Phys. Lett. B 396 (1997) 197 [hep-ph/9701311] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Kusenko and G. Segre, Pulsar kicks from neutrino oscillations, Phys. Rev. D 59 (1999) 061302 [astro-ph/9811144] [INSPIRE].

    ADS  Google Scholar 

  19. G.M. Fuller, A. Kusenko, I. Mocioiu and S. Pascoli, Pulsar kicks from a dark-matter sterile neutrino, Phys. Rev. D 68 (2003) 103002 [astro-ph/0307267] [INSPIRE].

    ADS  Google Scholar 

  20. M. Barkovich, J.C. D’Olivo and R. Montemayor, Active sterile neutrino oscillations and pulsar kicks, Phys. Rev. D 70 (2004) 043005 [hep-ph/0402259] [INSPIRE].

    ADS  Google Scholar 

  21. A. Kusenko, Pulsar kicks from neutrino oscillations, Int. J. Mod. Phys. D 13 (2004) 2065 [astro-ph/0409521] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Kusenko, B.P. Mandal and A. Mukherjee, Delayed pulsar kicks from the emission of sterile neutrinos, Phys. Rev. D 77 (2008) 123009 [arXiv:0801.4734] [INSPIRE].

    ADS  Google Scholar 

  23. E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Shaposhnikov, The νMSM, leptonic asymmetries and properties of singlet fermions, JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Asaka and H. Ishida, Flavour mixing of neutrinos and baryon asymmetry of the universe, Phys. Lett. B 692 (2010) 105 [arXiv:1004.5491] [INSPIRE].

    Article  ADS  Google Scholar 

  27. L. Canetti and M. Shaposhnikov, Baryon asymmetry of the universe in the νMSM, JCAP 09 (2010) 001 [arXiv:1006.0133] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. Asaka, S. Eijima and H. Ishida, Kinetic equations for baryogenesis via sterile neutrino oscillation, JCAP 02 (2012) 021 [arXiv:1112.5565] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [arXiv:0705.1729] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R.E. Shrock, General theory of weak leptonic and semileptonic decays. 1. Leptonic pseudoscalar meson decays, with associated tests for and bounds on, neutrino masses and lepton mixing, Phys. Rev. D 24 (1981) 1232 [INSPIRE].

    ADS  Google Scholar 

  31. F.P. Calaprice, D.F. Schreiber, M.B. Schneider, M. Green and R.E. Pollock, Search for finite mass neutrinos in the decay π+ → μ +νμ, Phys. Lett. B 106 (1981) 175 [INSPIRE].

    Article  ADS  Google Scholar 

  32. R.C. Minehart et al., Search for admixtures of massive neutrinos in the decay π+ → μ + + ν, Phys. Rev. Lett. 52 (1984) 804 [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Daum et al., Search for a neutral particle of mass 33.9-MeV in pion decay, Phys. Lett. B 361 (1995) 179 [INSPIRE].

    Article  ADS  Google Scholar 

  34. Karmen collaboration, R. Bilger et al., Search for the hypothetical π → μx decay, Phys. Lett. B 363 (1995) 41 [nucl-ex/9508001] [INSPIRE].

    Article  ADS  Google Scholar 

  35. NOMAD collaboration, P. Astier et al., New results on a search for a 33.9-MeV/c 2 neutral particle from π+ decay in the NOMAD experiment, Phys. Lett. B 527 (2002) 23 [INSPIRE].

    Article  Google Scholar 

  36. R. Abela et al., Search for an admixture of heavy neutrino in pion decay, Phys. Lett. B 105 (1981) 263 [Erratum ibid. B 106 (1981) 513] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Daum et al., Search for admixtures of massive neutrinos in the decay π+ → μ + + ν, Phys. Rev. D 36 (1987) 2624 [INSPIRE].

    ADS  Google Scholar 

  38. D.A. Bryman and T. Numao, Search for massive neutrinos in π+ → μ +ν decay, Phys. Rev. D 53 (1996) 558 [INSPIRE].

    ADS  Google Scholar 

  39. M. Daum et al., The KARMEN time anomaly: search for a neutral particle of mass 33.9 MeV in pion decay, Phys. Rev. Lett. 85 (2000) 1815 [hep-ex/0008014] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Y. Asano et al., Search for a heavy neutrino emitted in K + → μ +ν decay, Phys. Lett. B 104 (1981) 84 [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Hayano et al., Heavy neutrino search using K μ2 decay, Phys. Rev. Lett. 49 (1982) 1305 [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Yamazaki et al., A new improved experiment to search for heavy neutrinos and neutral bosons in kaon decay, in Proceedings of the 11th International Conference on Neutrino Physics and Astrophysics: Neutrino84, Dortmund Germany, 11-16 Jun 1984 [INSPIRE].

  43. CHARM collaboration, F. Bergsma et al., A search for decays of heavy neutrinos, Phys. Lett. B 128 (1983) 361 [INSPIRE].

    Article  ADS  Google Scholar 

  44. G. Bernardi et al., Search for neutrino decay, Phys. Lett. B 166 (1986) 479 [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Baranov et al., Search for heavy neutrinos at the IHEP-JINR neutrino detector, Phys. Lett. B 302 (1993) 336 [INSPIRE].

    Article  ADS  Google Scholar 

  46. NuTeV and E815 collaborations, A. Vaitaitis et al., Search for neutral heavy leptons in a high-energy neutrino beam, Phys. Rev. Lett. 83 (1999) 4943 [hep-ex/9908011] [INSPIRE].

    Article  ADS  Google Scholar 

  47. G. Bernardi et al., Further limits on heavy neutrino couplings, Phys. Lett. B 203 (1988) 332 [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Kusenko, S. Pascoli and D. Semikoz, New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results, JHEP 11 (2005) 028 [hep-ph/0405198] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Super-Kamiokande collaboration, Y. Ashie et al., A measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [INSPIRE].

    ADS  Google Scholar 

  50. P. Lipari, Lepton spectra in the earths atmosphere, Astropart. Phys. 1 (1993) 195 [INSPIRE].

    Article  ADS  Google Scholar 

  51. P. Gondolo, G. Ingelman and M. Thunman, Charm production and high-energy atmospheric muon and neutrino fluxes, Astropart. Phys. 5 (1996) 309 [hep-ph/9505417] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Calculation of the flux of atmospheric neutrinos, Phys. Rev. D 52 (1995) 4985 [hep-ph/9503439] [INSPIRE].

    ADS  Google Scholar 

  53. G. Battistoni et al., A three-dimensional calculation of atmospheric neutrino flux, Astropart. Phys. 12 (2000) 315 [hep-ph/9907408] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, A new calculation of the atmospheric neutrino flux in a 3-dimensional scheme, Phys. Rev. D 70 (2004) 043008 [astro-ph/0404457] [INSPIRE].

    ADS  Google Scholar 

  55. M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [INSPIRE].

    ADS  Google Scholar 

  56. M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model,Phys. Rev. D 83 (2011) 123001 [arXiv:1102.2688] [INSPIRE].

    ADS  Google Scholar 

  57. A.D. Dolgov, S.H. Hansen, G. Raffelt and D.V. Semikoz, Heavy sterile neutrinos: bounds from big bang nucleosynthesis and SN1987A, Nucl. Phys. B 590 (2000) 562 [hep-ph/0008138] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  59. T. Asaka, S. Eijima and H. Ishida, Mixing of active and sterile neutrinos, JHEP 04 (2011) 011 [arXiv:1101.1382] [INSPIRE].

    Article  ADS  Google Scholar 

  60. O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].

    Article  ADS  Google Scholar 

  61. C. Ishihara, Full three flavor oscillation analysis of atmospheric neutrino data observed in Super-Kamiokande, Ph.D. Thesis, University of Tokyo, Tokyo Japan (2010).

  62. K. Abe et al., Letter of intent: the Hyper-Kamiokande experimentdetector design and physics potential, arXiv:1109.3262 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asaka, T., Watanabe, A. Atmospheric sterile neutrinos. J. High Energ. Phys. 2012, 112 (2012). https://doi.org/10.1007/JHEP07(2012)112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)112

Keywords