Skip to main content
Log in

Axion model in gauge-mediated supersymmetry breaking and a solution to the μ/Bμ problem

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a simple supersymmetric axion model that can naturally explain the origin of the Higgs μ and Bμ terms in gauge mediation while solving the strong CP problem. To stabilize the Peccei-Quinn scale, we consider mixing between the messenger fields that communicate the supersymmetry and Peccei-Quinn symmetry breaking to the visible sector. Such mixing leads to the radiative stabilization of the Peccei-Quinn scale. In the model, a Higgs coupling to the axion superfield generates the B parameter at the soft mass scale while a small μ term is induced after the Peccei-Quinn symmetry breaking. We also explore the phenomenological and cosmological aspects of the model, which crucially depend on the saxion and axino interactions with the ordinary particles induced by the Higgs coupling to the axion superfield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [SPIRES].

    Article  ADS  Google Scholar 

  2. S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [SPIRES].

    Article  ADS  Google Scholar 

  3. M. Dine and W. Fischler, A phenomenological model of particle physics based on supersymmetry, Phys. Lett. B 110 (1982) 227 [SPIRES].

    ADS  Google Scholar 

  4. C.R. Nappi and B.A. Ovrut, Supersymmetric extension of the SU(3) × SU(2) × U(1) model, Phys. Lett. B 113 (1982) 175 [SPIRES].

    ADS  Google Scholar 

  5. L. Álvarez-Gaumé, M. Claudson and M.B. Wise, Low-energy supersymmetry, Nucl. Phys. B 207 (1982) 96 [SPIRES].

    Article  ADS  Google Scholar 

  6. S. Dimopoulos and S. Raby, Geometric hierarchy, Nucl. Phys. B 219 (1983) 479 [SPIRES].

    Article  ADS  Google Scholar 

  7. M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [SPIRES].

    ADS  Google Scholar 

  8. M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [SPIRES].

    ADS  Google Scholar 

  9. M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [SPIRES].

    ADS  Google Scholar 

  10. G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].

    Article  ADS  Google Scholar 

  11. R. Kitano, H. Ooguri and Y. Ookouchi, Supersymmetry breaking and gauge mediation, arXiv:1001.4535 [SPIRES].

  12. R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [SPIRES].

    Article  ADS  Google Scholar 

  13. R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [SPIRES].

    ADS  Google Scholar 

  14. J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rept. 150 (1987) 1 [SPIRES].

    Article  ADS  Google Scholar 

  15. H.-Y. Cheng, The strong CP problem revisited, Phys. Rept. 158 (1988) 1 [SPIRES].

    Article  ADS  Google Scholar 

  16. J.E. Kim and G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3125] [SPIRES].

    Article  ADS  Google Scholar 

  17. J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. E.J. Chun, J.E. Kim and H.P. Nilles, A natural solution of the mu problem with a composite axion in the hidden sector, Nucl. Phys. B 370 (1992) 105 [SPIRES].

    Article  ADS  Google Scholar 

  19. H. Murayama, H. Suzuki and T. Yanagida, Radiative breaking of Peccei-Quinn symmetry at the intermediate mass scale, Phys. Lett. B 291 (1992) 418 [SPIRES].

    ADS  Google Scholar 

  20. S.P. Martin, Collider signals from slow decays in supersymmetric models with an intermediate-scale solution to the mu problem, Phys. Rev. D 62 (2000) 095008 [hep-ph/0005116] [SPIRES].

    ADS  Google Scholar 

  21. J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [SPIRES].

    Article  ADS  Google Scholar 

  22. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. A.R. Zhitnitsky, On possible suppression of the axion hadron interactions, (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [SPIRES].

    Google Scholar 

  24. M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [SPIRES].

    ADS  Google Scholar 

  25. N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry-breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [SPIRES].

    ADS  Google Scholar 

  26. T. Asaka and M. Yamaguchi, Hadronic axion model in gauge-mediated supersymmetry breaking, Phys. Lett. B 437 (1998) 51 [hep-ph/9805449] [SPIRES].

    ADS  Google Scholar 

  27. T. Asaka and M. Yamaguchi, Hadronic axion model in gauge-mediated supersymmetry breaking and cosmology of saxion, Phys. Rev. D 59 (1999) 125003 [hep-ph/9811451] [SPIRES].

    ADS  Google Scholar 

  28. E.J. Chun, Strong CP and μ problem in theories with gauge mediated supersymmetry breaking, Phys. Rev. D 59 (1999) 015011 [hep-ph/9712406] [SPIRES].

    ADS  Google Scholar 

  29. L.M. Carpenter, M. Dine, G. Festuccia and L. Ubaldi, Axions in gauge mediation, Phys. Rev. D 80 (2009) 125023 [arXiv:0906.5015] [SPIRES].

    ADS  Google Scholar 

  30. D.H. Lyth and E.D. Stewart, Cosmology with a TeV mass GUT Higgs, Phys. Rev. Lett. 75 (1995) 201 [hep-ph/9502417] [SPIRES].

    Article  ADS  Google Scholar 

  31. D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem, Phys. Rev. D 53 (1996) 1784 [hep-ph/9510204] [SPIRES].

    ADS  Google Scholar 

  32. G.F. Giudice and R. Rattazzi, Extracting supersymmetry-breaking effects from wave-function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [SPIRES].

    Article  ADS  Google Scholar 

  33. G.F. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [SPIRES].

    ADS  Google Scholar 

  34. G.R. Dvali, G.F. Giudice and A. Pomarol, The μ-problem in theories with gauge-mediated supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [SPIRES].

    Article  ADS  Google Scholar 

  35. M. Ibe and R. Kitano, Sweet spot supersymmetry, JHEP 08 (2007) 016 [arXiv:0705.3686] [SPIRES].

    Article  ADS  Google Scholar 

  36. G.F. Giudice, H.D. Kim and R. Rattazzi, Natural μ and Bμ in gauge mediation, Phys. Lett. B 660 (2008) 545 [arXiv:0711.4448] [SPIRES].

    ADS  Google Scholar 

  37. S. Kasuya, M. Kawasaki and T. Yanagida, Domain wall problem of axion and isocurvature fluctuations in chaotic inflation models, Phys. Lett. B 415 (1997) 117 [hep-ph/9709202] [SPIRES].

    ADS  Google Scholar 

  38. N. Arkani-Hamed, J. March-Russell and H. Murayama, Building models of gauge-mediated supersymmetry breaking without a messenger sector, Nucl. Phys. B 509 (1998) 3 [hep-ph/9701286] [SPIRES].

    Article  ADS  Google Scholar 

  39. E. Poppitz and S.P. Trivedi, Some remarks on gauge-mediated supersymmetry breaking, Phys. Lett. B 401 (1997) 38 [hep-ph/9703246] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. A. Brandenburg, L. Covi, K. Hamaguchi, L. Roszkowski and F.D. Steffen, Signatures of axinos and gravitinos at colliders, Phys. Lett. B 617 (2005) 99 [hep-ph/0501287] [SPIRES].

    ADS  Google Scholar 

  41. P. Fayet, Lower limit on the mass of a light gravitino from e + e annihilation experiments, Phys. Lett. B 175 (1986) 471 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [SPIRES].

    Article  ADS  Google Scholar 

  43. L. Covi, H.-B. Kim, J.E. Kim and L. Roszkowski, Axinos as dark matter, JHEP 05 (2001) 033 [hep-ph/0101009] [SPIRES].

    Article  ADS  Google Scholar 

  44. E.J. Chun, H.B. Kim and D.H. Lyth, Cosmological constraints on a Peccei-Quinn flatino as the lightest supersymmetric particle, Phys. Rev. D 62 (2000) 125001 [hep-ph/0008139] [SPIRES].

    ADS  Google Scholar 

  45. E.J. Chun, H.B. Kim, K. Kohri and D.H. Lyth, Flaxino dark matter and stau decay, JHEP 03 (2008) 061 [arXiv:0801.4108] [SPIRES].

    Article  ADS  Google Scholar 

  46. S. Bashinsky and U. Seljak, Signatures of relativistic neutrinos in CMB anisotropy and matter clustering, Phys. Rev. D 69 (2004) 083002 [astro-ph/0310198] [SPIRES].

    ADS  Google Scholar 

  47. S. Hannestad and G. Raffelt, Cosmological mass limits on neutrinos, axions and other light particles, JCAP 04 (2004) 008 [hep-ph/0312154] [SPIRES].

    ADS  Google Scholar 

  48. P. Crotty, J. Lesgourgues and S. Pastor, Current cosmological bounds on neutrino masses and relativistic relics, Phys. Rev. D 69 (2004) 123007 [hep-ph/0402049] [SPIRES].

    ADS  Google Scholar 

  49. S. Hannestad, A. Mirizzi, G.G. Raffelt and Y.Y.Y. Wong, Cosmological constraints on neutrino plus axion hot dark matter: update after WMAP-5, JCAP 04 (2008) 019 [arXiv:0803.1585] [SPIRES].

    ADS  Google Scholar 

  50. K. Choi, E.J. Chun and J.E. Kim, Cosmological implications of radiatively generated axion scale, Phys. Lett. B 403 (1997) 209 [hep-ph/9608222] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. S. Kim, W.-I. Park and E.D. Stewart, Thermal inflation, baryogenesis and axions, JHEP 01 (2009) 015 [arXiv:0807.3607] [SPIRES].

    Article  ADS  Google Scholar 

  52. K. Choi, K.S. Jeong, W.-I. Park and C.S. Shin, Thermal inflation and baryogenesis in heavy gravitino scenario, JCAP 11 (2009) 018 [arXiv:0908.2154] [SPIRES].

    ADS  Google Scholar 

  53. S. Nakamura, K.-i. Okumura and M. Yamaguchi, Axionic mirage mediation, Phys. Rev. D 77 (2008) 115027 [arXiv:0803.3725] [SPIRES].

    ADS  Google Scholar 

  54. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  55. K. Jedamzik, M. Lemoine and G. Moultaka, Gravitino, axino, Kaluza-Klein graviton warm and mixed dark matter and reionisation, JCAP 07 (2006) 010 [astro-ph/0508141] [SPIRES].

    ADS  Google Scholar 

  56. K. Rajagopal, M.S. Turner and F. Wilczek, Cosmological implications of axinos, Nucl. Phys. B 358 (1991) 447 [SPIRES].

    Article  ADS  Google Scholar 

  57. A. Brandenburg and F.D. Steffen, Axino dark matter from thermal production, JCAP 08 (2004) 008 [hep-ph/0405158] [SPIRES].

    ADS  Google Scholar 

  58. A. Strumia, Thermal production of axino dark matter, JHEP 06 (2010) 036 [arXiv:1003.5847] [SPIRES].

    Article  ADS  Google Scholar 

  59. E.J. Chun, Dark matter in the Kim-Nilles mechanism, arXiv:1104.2219 [SPIRES].

  60. T. Asaka, K. Hamaguchi and K. Suzuki, Cosmological gravitino problem in gauge mediated supersymmetry breaking models, Phys. Lett. B 490 (2000) 136 [hep-ph/0005136] [SPIRES].

    ADS  Google Scholar 

  61. M. Kawasaki, T. Moroi and T. Yanagida, Constraint on the reheating temperature from the decay of the Polonyi field, Phys. Lett. B 370 (1996) 52 [hep-ph/9509399] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Sik Jeong.

Additional information

ArXiv ePrint:1102.3301

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sik Jeong, K., Yamaguchi, M. Axion model in gauge-mediated supersymmetry breaking and a solution to the μ/Bμ problem. J. High Energ. Phys. 2011, 124 (2011). https://doi.org/10.1007/JHEP07(2011)124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)124

Keywords

Navigation