Skip to main content
Log in

Gravitational solitons, hairy black holes and phase transitions in BHT massive gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Hairy black holes and gravitational solitons in three dimensions for the new (BHT) massive gravity theory are considered at the special case when there is a unique maximally symmetric solution. Following the Brown-York approach with suitable counterterms, it is shown that the soliton possesses a fixed negative mass which coincides with that of AdS spacetime regardless the value of the integration constant that describes it. The soliton is then regarded as a degenerate ground state labeled by a modulus parameter. The Euclidean action is shown to be finite and independent of modulus and hair parameters for both classes of solutions, reproducing the hairy black hole free energy. Modular invariance implies that the gravitational hair becomes determined by the modulus parameter. Cardy formula is shown to agree with the semiclassical entropy provided the modulus parameter of the ground state is spontaneously fixed, suggesting that the hairy black hole is in a broken phase. Indeed, it is found that the critical temperature T c  = (2πl)−1 characterizes a first order phase transition between the static hairy black hole and the soliton which, due to the existence of gravitational hair, can take place in the semiclassical regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975 [SPIRES].

    Article  ADS  Google Scholar 

  2. S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406 [Ann. Phys. 281 (2000) 409]. [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. M. Blagojevic and B. Cvetkovic, Hamiltonian analysis of BHT massive gravity, JHEP 01 (2011) 082 [arXiv:1010.2596] [SPIRES].

    Article  ADS  Google Scholar 

  6. M. Blagojevic and B. Cvetkovic, Extra gauge symmetries in BHT gravity, JHEP 03 (2011) 139 [arXiv:1103.2388] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Sadegh and A. Shirzad, Constraint structure of the three dimensional massive gravity, Phys. Rev. D 83 (2011) 084040 [arXiv:1010.2887] [SPIRES].

    ADS  Google Scholar 

  8. B. Tekin, Partially massless spin-2 fields in string generated models, hep-th/0306178 [SPIRES].

  9. S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Ann. Phys. 154 (1984) 396 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett. 87 (2001) 031601 [hep-th/0102166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Deser, Ghost-free, finite, fourth order D = 3 (alas) gravity, Phys. Rev. Lett. 103 (2009) 101302 [arXiv:0904.4473] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT masive gravity, JHEP 07 (2009) 011 [arXiv:0905.1545] [SPIRES].

    Article  ADS  Google Scholar 

  14. G. Clement, Warped AdS 3 black holes in new massive gravity, Class. Quant. Grav. 26 (2009) 105015 [arXiv:0902.4634] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Clement, Black holes with a null Killing vector in new massive gravity in three dimensions, Class. Quant. Grav. 26 (2009) 165002 [arXiv:0905.0553] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. E. Ayon-Beato, G. Giribet and M. Hassaine, Bending AdS waves with new massive gravity, JHEP 05 (2009) 029 [arXiv:0904.0668] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Chakhad, Kundt spacetimes of massive gravity in three dimensions, arXiv:0907.1973 [SPIRES].

  19. H. Ahmedov and A.N. Aliev, The general type N solution of new massive gravity, Phys. Lett. B 694 (2010) 143 [arXiv:1008.0303] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. H.L.C. Louzada, U. Camara dS and G.M. Sotkov, Massive 3D gravity big-bounce, Phys. Lett. B 686 (2010) 268 [arXiv:1001.3622] [SPIRES].

    ADS  Google Scholar 

  21. U.d. Camara and G.M. Sotkov, New massive gravity domain walls, Phys. Lett. B 694 (2010) 94 [arXiv:1008.2553] [SPIRES].

    ADS  Google Scholar 

  22. H. Ahmedov and A.N. Aliev, Type D solutions of 3D new massive gravity, Phys. Rev. D 83 (2011) 084032 [arXiv:1103.1086] [SPIRES].

    ADS  Google Scholar 

  23. H. Maeda, Black-hole dynamics in BHT massive gravity, JHEP 02 (2011) 039 [arXiv:1012.5048] [SPIRES].

    Article  ADS  Google Scholar 

  24. I. Bakas and C. Sourdis, Homogeneous vacua of (generalized) new massive gravity, Class. Quant. Grav. 28 (2011) 015012 [arXiv:1006.1871] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Ghodsi and M. Moghadassi, Charged black holes in new massive gravity, Phys. Lett. B 695 (2011) 359 [arXiv:1007.4323] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. M. Alishahiha and A. Naseh, Holographic renormalization of new massive gravity, Phys. Rev. D 82 (2010) 104043 [arXiv:1005.1544] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. I. Gullu, T.C. Sisman and B. Tekin, c-functions in the Born-Infeld extended new massive gravity, Phys. Rev. D 82 (2010) 024032 [arXiv:1005.3214] [SPIRES].

    ADS  Google Scholar 

  28. A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [SPIRES].

    Article  ADS  Google Scholar 

  29. D. Grumiller, N. Johansson and T. Zojer, Short-cut to new anomalies in gravity duals to logarithmic conformal field theories, JHEP 01 (2011) 090 [arXiv:1010.4449] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Sinha, On higher derivative gravity, c-theorems and cosmology, Class. Quant. Grav. 28 (2011) 085002 [arXiv:1008.4315] [SPIRES].

    Article  ADS  Google Scholar 

  31. Y. Kwon, S. Nam, J.-D. Park and S.-H. Yi, Quasi normal modes for new type black holes in new massive gravity, Class. Quant. Grav. 28 (2011) 145006 [arXiv:1102.0138] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  32. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. L.F. Abbott and S. Deser, Stability of gravity with a cosmological constant, Nucl. Phys. B 195 (1982) 76 [SPIRES].

    Article  ADS  Google Scholar 

  34. S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev. D 67 (2003) 084009 [hep-th/0212292] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Giribet and M. Leston, Boundary stress tensor and counterterms for weakened AdS3 asymptotic in new massive gravity, JHEP 09 (2010) 070 [arXiv:1006.3349] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].

    ADS  Google Scholar 

  42. G. Giribet, J. Oliva, D. Tempo and R. Troncoso, Microscopic entropy of the three-dimensional rotating black hole of BHT massive gravity, Phys. Rev. D 80 (2009) 124046 [arXiv:0909.2564] [SPIRES].

    ADS  Google Scholar 

  43. S. Nam, J.-D. Park and S.-H. Yi, Mass and angular momentum of black holes in new massive gravity, Phys. Rev. D 82 (2010) 124049 [arXiv:1009.1962] [SPIRES].

    ADS  Google Scholar 

  44. S. Nam, J.-D. Park and S.-H. Yi, AdS black hole solutions in the extended new massive gravity, JHEP 07 (2010) 058 [arXiv:1005.1619] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. B. Mirza and Z. Sherkatghanad, Corrected entropy of the rotating black hole solution of the new massive gravity using the tunneling method and Cardy formula, Phys. Rev. D 83 (2011) 104001 [arXiv:1104.0390] [SPIRES].

    ADS  Google Scholar 

  47. R. Li, S. Li and J.-R. Ren, Hawking radiation of fermionic field and anomaly in 2 + 1 dimensional black holes, Class. Quant. Grav. 27 (2010) 155011 [arXiv:1005.3615] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Banerjee, S.K. Modak and D. Roychowdhury, Thermodynamics of Hawking-Page phase transition in AdS black holes, arXiv:1106.3877.

  49. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field, Phys. Rev. D 65 (2002) 104007 [hep-th/0201170] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. F. Correa, C. Martinez and R. Troncoso, Scalar solitons and the microscopic entropy of hairy black holes in three dimensions, JHEP 01 (2011) 034 [arXiv:1010.1259] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. S. Carlip, Entropy from conformal field theory at Killing horizons, Class. Quant. Grav. 16 (1999) 3327 [gr-qc/9906126] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. F. Loran, M.M. Sheikh-Jabbari and M. Vincon, Beyond logarithmic corrections to Cardy formula, JHEP 01 (2011) 110 [arXiv:1010.3561] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. J. Oliva, D. Tempo and R. Troncoso, Static spherically symmetric solutions for conformal gravity in three dimensions, Int. J. Mod. Phys. A 24 (2009) 1588 [arXiv:0905.1510] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. N. Cruz and S. Lepe, On the thermal description of the BTZ black holes, Phys. Lett. B 593 (2004) 235 [hep-th/0404218] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. Y. Kurita and M.-a. Sakagami, CFT description of three-dimensional Hawking-Page transition, Prog. Theor. Phys. 113 (2005) 1193 [hep-th/0403091] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. B. Reznik, Thermodynamics and evaporation of the (2 + 1)-dimensions black hole, Phys. Rev. D 51 (1995) 1728 [gr-qc/9403027] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  60. R.-G. Cai, Z.-J. Lu and Y.-Z. Zhang, Critical behavior in 2 + 1 dimensional black holes, Phys. Rev. D 55 (1997) 853 [gr-qc/9702032] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. S. Carlip and C. Teitelboim, Aspects of black hole quantum mechanics and thermodynamics in (2 + 1)-dimensions, Phys. Rev. D 51 (1995) 622 [gr-qc/9405070] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. S.W. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. A. Pérez, D. Tempo and R. Troncoso, Dynamical structure of massive gravity theories in three dimensions, work in progress.

  64. M. Bañados, L.J. Garay and M. Henneaux, The dynamical structure of higher dimensional Chern-Simons theory, Nucl. Phys. B 476 (1996) 611 [hep-th/9605159] [SPIRES].

    Article  ADS  Google Scholar 

  65. O. Chandía, R. Troncoso and J. Zanelli, Dynamical content of Chern-Simons supergravity, hep-th/9903204 [SPIRES].

  66. O. Mišković, R. Troncoso and J. Zanelli, Canonical sectors of five-dimensional Chern-Simons theories, Phys. Lett. B 615 (2005) 277 [hep-th/0504055] [SPIRES].

    ADS  Google Scholar 

  67. O. Mišković, R. Troncoso and J. Zanelli, Dynamics and BPS states of AdS5 supergravity with a Gauss-Bonnet term, Phys. Lett. B 637 (2006) 317 [hep-th/0603183] [SPIRES].

    ADS  Google Scholar 

  68. J. Saavedra, R. Troncoso and J. Zanelli, Degenerate dynamical systems, J. Math. Phys. 42 (2001) 4383 [hep-th/0011231] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [SPIRES].

    Article  ADS  Google Scholar 

  70. P.C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev. 158 (1967) 383 [SPIRES].

    Article  ADS  Google Scholar 

  71. S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  72. D. Anninos, S.A. Hartnoll and N. Iqbal, Holography and the Coleman-Mermin-Wagner theorem, Phys. Rev. D 82 (2010) 066008 [arXiv:1005.1973] [SPIRES].

    ADS  Google Scholar 

  73. J. Ren, One-dimensional holographic superconductor from AdS 3 /CFT 2 correspondence, JHEP 11 (2010) 055 [arXiv:1008.3904] [SPIRES].

    Article  ADS  Google Scholar 

  74. N. Lashkari, Holographic symmetry-breaking phases in AdS 3 /CFT 2, arXiv:1011.3520 [SPIRES].

  75. Y. Liu, Q. Pan and B. Wang, Holographic superconductor developed in BTZ black hole background with backreactions, arXiv:1106.4353 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Pérez.

Additional information

ArXiv ePrint: 1106.4849

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, A., Tempo, D. & Troncoso, R. Gravitational solitons, hairy black holes and phase transitions in BHT massive gravity. J. High Energ. Phys. 2011, 93 (2011). https://doi.org/10.1007/JHEP07(2011)093

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)093

Keywords

Navigation