Skip to main content
Log in

Probe branes, time-dependent couplings and thermalization in AdS/CFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present holographic descriptions of thermalization in conformal field theories using probe D-branes in AdS × S space-times. We find that the induced metrics on Dp-brane worldvolumes which are rotating in an internal sphere direction have horizons with characteristic Hawking temperatures even if there is no black hole in the bulk AdS. The AdS/CFT correspondence applied to such systems indeed reveals thermal properties such as Brownian motions and AC conductivities in the dual conformal field theories. We also use this framework to holographically analyze time-dependent systems undergoing a quantum quench, where parameters in quantum field theories, such as a mass or a coupling constant, are suddenly changed. We confirm that this leads to thermal behavior by demonstrating the formation of apparent horizons in the induced metric after a certain time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J .M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Time dependent cosmologies and their duals, Phys. Rev. D 74 (2006) 026002 [hep-th/0602107] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Cosmologies with null singularities and their gauge theory duals, Phys. Rev. D 75 (2007) 026002 [hep-th/0610053] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. A. Awad, S.R. Das, K. Narayan and S.P. Trivedi, Gauge theory duals of cosmological backgrounds and their energy momentum tensors, Phys. Rev. D 77 (2008) 046008 [arXiv:0711.2994] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. A. Awad, S.R. Das, S. Nampuri, K. Narayan and S.P. Trivedi, Gauge theories with time dependent couplings and their cosmological duals, Phys. Rev. D 79 (2009) 046004 [arXiv:0807.1517] [SPIRES].

    ADS  Google Scholar 

  9. A. Awad, S.R. Das, A. Ghosh, J.-H. Oh and S.P. Trivedi, Slowly varying dilaton cosmologies and their field theory duals, Phys. Rev. D 80 (2009) 126011 [arXiv:0906.3275] [SPIRES].

    ADS  Google Scholar 

  10. T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP 07 (2004) 073 [hep-th/0406134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Hertog and G.T. Horowitz, Holographic description of AdS cosmologies, JHEP 04 (2005) 005 [hep-th/0503071] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. N. Turok, B. Craps and T. Hertog, From big crunch to Big Bang with AdS/CFT, arXiv:0711.1824 [SPIRES].

  13. B. Craps, T. Hertog and N. Turok, Quantum resolution of cosmological singularities using AdS/CFT, arXiv:0712.4180 [SPIRES].

  14. J. McGreevy and E. Silverstein, The tachyon at the end of the universe, JHEP 08 (2005) 090 [hep-th/0506130] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Silverstein, Dimensional mutation and spacelike singularities, Phys. Rev. D 73 (2006) 086004 [hep-th/0510044] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. G.T. Horowitz and E. Silverstein, The inside story: Quasilocal tachyons and black holes, Phys. Rev. D 73 (2006) 064016 [hep-th/0601032] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. G. Horowitz, A. Lawrence and E. Silverstein, Insightful D-branes, JHEP 07 (2009) 057 [arXiv:0904.3922] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. D.T. Son and A.O. Starinets, V iscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  20. A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295c–298c [arXiv:0907.4798] [SPIRES].

  21. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  22. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  24. M. Van Raamsdonk, Black hole dynamics from atmospheric science, JHEP 05 (2008) 106 [arXiv:0802.3224] [SPIRES].

    Article  ADS  Google Scholar 

  25. R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [SPIRES].

    Article  ADS  Google Scholar 

  27. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-fromequilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, arXiv:0906.4426 [SPIRES].

  29. S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium condensation process in a holographic superconductor, arXiv:1005.0633 [SPIRES].

  31. S. Mondal, D. Sen and K. Sengupta, Non-equilibrium dynamics of quantum systems: order parameter evolution, defect generation, and qubit transfer, arXiv:0908.2922.

  32. P. Calabrese and J .L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393] [SPIRES].

  33. P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [SPIRES].

    Article  ADS  Google Scholar 

  34. M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: an Ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].

    Article  ADS  Google Scholar 

  35. P. Calabrese and J . Cardy, Quantum quenches in extended systems, J. Stat. Mech. (2007) 06008 [arXiv:0704.1880] [SPIRES].

  36. S. Sotiriadis and J. Cardy, Inhomogeneous quantum quenches, J. Stat. Mech. (2008) P11003 [arXiv:0808.0116].

  37. S. Sotiriadis, P. Calabrese and J. Cardy, Quantum quench from a thermal initial state, EPL 87 (2009) 20002 [arXiv:0903.0895].

    Article  ADS  Google Scholar 

  38. S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: a self-consistent approximation, Phys. Rev. B 81 (2010) 134305 [arXiv:1002.0167] [SPIRES].

    ADS  Google Scholar 

  39. A. Polkovnikov, Universal adiabatic dynamics in the vicinity of a quantum critical point, Phys. Rev. B 72 (2005) 161201 [cond-mat/0312144].

    ADS  Google Scholar 

  40. V. Gritsev and A. Polkovnikov, Universal dynamics near quantum critical points, arXiv:0910.3692 [SPIRES].

  41. K. Sengupta, D. Sen and S. Mondal, Exact results for quench dynamics and defect production in a two-dimensional model, Phys. Rev. Lett. 100 (2008) 077204 [arXiv:0710.1712].

    Article  ADS  Google Scholar 

  42. D. Patane, L. Amico, A. Silva, R. Fazio and G. Santoro, Adiabatic dynamics of a quantum critical system coupled to an environment: scaling and kinetic equation approaches, Phys. Rev. B 80 (2009) 024302 [arXiv:0812.3685].

    ADS  Google Scholar 

  43. S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [SPIRES].

    Article  ADS  Google Scholar 

  44. A. Karch and L. Randall, Localized gravity in string theory, Phys. Rev. Lett. 87 (2001) 061601 [hep-th/0105108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. D. Mateos, R.C. Myers and R.M. Thomson, Holographic viscosity of fundamental matter, Phys. Rev. Lett. 98 (2007) 101601 [hep-th/0610184] [SPIRES].

    Article  ADS  Google Scholar 

  50. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. R. Apreda, J. Erdmenger, N. Evans and Z. Guralnik, Strong coupling effective Higgs potential and a first order thermal phase transition from AdS/CFT duality, Phys. Rev. D 71 (2005) 126002 [hep-th/0504151] [SPIRES].

    ADS  Google Scholar 

  54. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].

    ADS  Google Scholar 

  56. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor superconductivity from gauge/gravity duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic description of the phase diagram of a chiral symmetry breaking gauge theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [SPIRES].

    Article  Google Scholar 

  58. K. Jensen, A. Karch and E.G. Thompson, A holographic quantum critical point at finite magnetic field and finite density, JHEP 05 (2010) 015 [arXiv:1002.2447] [SPIRES].

    Article  Google Scholar 

  59. K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless transitions, arXiv:1002.3159 [SPIRES].

  60. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, arXiv:1003.2694 [SPIRES].

  61. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].

    Article  Google Scholar 

  62. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From black holes to strange metals, arXiv:1003.1728 [SPIRES].

  63. J . McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].

  64. H. Liu, J . McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  65. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].

  66. J.G. Russo and P.K. Townsend, Accelerating branes and brane temperature, Class. Quant. Grav. 25 (2008) 175017 [arXiv:0805.3488] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. M. Chernicoff and A. Guijosa, Acceleration, energy loss and screening in strongly-coupled gauge theories, JHEP 06 (2008) 005 [arXiv:0803.3070] [SPIRES].

    Article  ADS  Google Scholar 

  68. A. Paredes, K. Peeters and M. Zamaklar, Temperature versus acceleration: the Unruh effect for holographic models, JHEP 04 (2009) 015 [arXiv:0812.0981] [SPIRES].

    Article  ADS  Google Scholar 

  69. C. Athanasiou, P.M. Chesler, H. Liu, D. Nickel and K. Rajagopal, Synchrotron radiation in strongly coupled conformal field theories, Phys. Rev. D 81 (2010) 126001 [arXiv:1001.3880] [SPIRES].

    ADS  Google Scholar 

  70. E. Caceres, M. Chernicoff, A. Guijosa and J.F. Pedraza, Quantum fluctuations and the Unruh effect in strongly-coupled conformal field theories, JHEP 06 (2010) 078 [arXiv:1003.5332] [SPIRES].

    Article  Google Scholar 

  71. T. Hirata, S. Mukohyama and T. Takayanagi, Decaying D-branes and moving mirrors, JHEP 05 (2008) 089 [arXiv:0804.1176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  72. T. Hirayama, P.-W. Kao, S. Kawamoto and F.-L. Lin, Unruh effect and holography, arXiv:1001.1289 [SPIRES].

  73. W.G. Unruh, Experimental black hole evaporation, Phys. Rev. Lett. 46 (1981) 1351 [SPIRES].

    Article  ADS  Google Scholar 

  74. C. Barcelo, S. Liberati and M. Visser, Analog gravity from field theory normal modes?, Class. Quant. Grav. 18 (2001) 3595 [gr-qc/0104001] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  75. D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  76. O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  77. N.R. Constable, J. Erdmenger, Z. Guralnik and I. Kirsch, Intersecting D3-branes and holography, Phys. Rev. D 68 (2003) 106007 [hep-th/0211222] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  78. N.R. Constable, J. Erdmenger, Z. Guralnik and I. Kirsch, (De)constructing intersecting M5-branes, Phys. Rev. D 67 (2003) 106005 [hep-th/0212136] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  79. J. de Boer, V.E. Hubeny, M. Rangamani and M. Shigemori, Brownian motion in AdS/CFT, JHEP 07 (2009) 094 [arXiv:0812.5112] [SPIRES].

    Article  Google Scholar 

  80. A.N. Atmaja, J. de Boer and M. Shigemori, Holographic brownian motion and time scales in strongly coupled plasmas, arXiv:1002.2429 [SPIRES].

  81. D.T. Son and D. Teaney, Thermal noise and stochastic strings in AdS/CFT, JHEP 07 (2009) 021 [arXiv:0901.2338] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  82. A. O’Bannon, Toward a holographic model of superconducting fermions, JHEP 01 (2009) 074 [arXiv:0811.0198] [SPIRES].

    Article  Google Scholar 

  83. N. Evans and E. Threlfall, R-Charge chemical potential in the M2-M5 system, arXiv:0807.3679 [SPIRES].

  84. N. Evans and E. Threlfall, Chemical potential in the gravity dual of a 2+1 dimensional system, Phys. Rev. D 79 (2009) 066008 [arXiv:0812.3273] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  85. A. Karch, A. O’Bannon and E. Thompson, The stress-energy tensor of flavor fields from AdS/CFT, JHEP 04 (2009) 021 [arXiv:0812.3629] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  86. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  87. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  88. H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [SPIRES].

    Article  ADS  Google Scholar 

  89. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  90. R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. of Research and Development 1 (1957) 223.

    Article  MathSciNet  Google Scholar 

  91. M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31 (1985) 6207.

    ADS  Google Scholar 

  92. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  93. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  94. T. Damour and R. Ruffini, Black hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism, Phys. Rev. D 14 (1976) 332 [SPIRES].

    ADS  Google Scholar 

  95. M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  96. M. Visser, Essential and inessential features of Hawking radiation, Int. J. Mod. Phys. D 12 (2003) 649 [hep-th/0106111] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuma Nishioka.

Additional information

ArXiv ePrint: 1005.3348

2Permanent address

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S.R., Nishioka, T. & Takayanagi, T. Probe branes, time-dependent couplings and thermalization in AdS/CFT. J. High Energ. Phys. 2010, 71 (2010). https://doi.org/10.1007/JHEP07(2010)071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)071

Keywords

Navigation