Skip to main content
Log in

The constraints of conformal symmetry on RG flows

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

If the coupling constants in QFT are promoted to functions of space-time, the dependence of the path integral on these couplings is highly constrained by conformal symmetry. We begin the present note by showing that this idea leads to a new proof of Zamolodchikov’s theorem. We then review how this simple observation also leads to a derivation of the a-theorem. We exemplify the general procedure in some interacting theories in four space-time dimensions. We concentrate on Banks-Zaks and weakly relevant flows, which can be controlled by ordinary and conformal perturbation theories, respectively. We compute explicitly the dependence of the path integral on the coupling constants and extract the change in the a-anomaly (this agrees with more conventional computations of the same quantity). We also discuss some general properties of the sum rule found in [1] and study it in several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  4. V. Novikov, M.A. Shifman, A. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].

    Article  ADS  Google Scholar 

  5. N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. Y. Nakayama, No Forbidden Landscape in String/M-theory, JHEP 01 (2010) 030 [arXiv:0909.4297] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Dorigoni and V.S. Rychkov, Scale Invariance + UnitarityConformal Invariance?, arXiv:0910.1087 [INSPIRE].

  9. I. Antoniadis and M. Buican, On R-symmetric Fixed Points and Superconformality, Phys. Rev. D 83 (2011) 105011 [arXiv:1102.2294] [INSPIRE].

    ADS  Google Scholar 

  10. J.-F. Fortin, B. Grinstein and A. Stergiou, Scale without Conformal Invariance: Theoretical Foundations, arXiv:1107.3840 [INSPIRE].

  11. T.L. Curtright, X. Jin and C.K. Zachos, RG flows, cycles and c-theorem folklore, Phys. Rev. Lett. 108 (2012) 131601 [arXiv:1111.2649] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. A. Cappelli, D. Friedan and J.I. Latorre, C theorem and spectral representation, Nucl. Phys. B 352 (1991) 616 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Schwimmer and S. Theisen, Spontaneous Breaking of Conformal Invariance and Trace Anomaly Matching, Nucl. Phys. B 847 (2011) 590 [arXiv:1011.0696] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. T. Pham and T.N. Truong, Evaluation of the derivative quartic terms of the meson chiral lagrangian from forward dispersion relation, Phys. Rev. D 31 (1985) 3027 [INSPIRE].

    ADS  Google Scholar 

  19. J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying Models of New Physics via WW Scattering, Phys. Rev. Lett. 98 (2007) 041601 [hep-ph/0604255] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Dine, G. Festuccia and Z. Komargodski, A Bound on the Superpotential, JHEP 03 (2010) 011 [arXiv:0910.2527] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Adams, A. Jenkins and D. O’Connell, Signs of analyticity in fermion scattering, arXiv:0802.4081 [INSPIRE].

  22. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. K.A. Intriligator and B. Wecht, The Exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. I. Bah and B. Wecht, New N = 1 Superconformal Field Theories In Four Dimensions, arXiv:1111.3402 [INSPIRE].

  25. M. Buican, A Conjectured Bound on Accidental Symmetries, Phys. Rev. D 85 (2012) 025020 [arXiv:1109.3279] [INSPIRE].

    ADS  Google Scholar 

  26. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  32. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. I. Jack and H. Osborn, Analogs for the c theorem for four-dimensional renormalizable field theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal Deformations and Global Symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. Y. Nakayama, On ∈-conjecture in a-theorem, arXiv:1110.2586 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohar Komargodski.

Additional information

ArXiv ePrint: 1112.4538

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komargodski, Z. The constraints of conformal symmetry on RG flows. J. High Energ. Phys. 2012, 69 (2012). https://doi.org/10.1007/JHEP07(2012)069

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)069

Keywords

Navigation