Skip to main content
Log in

A4 × SU(5) SUSY GUT of flavour with trimaximal neutrino mixing

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The recent discovery of a sizeable reactor angle θ 13 by Daya Bay and RENO has ruled out exact tri-bimaximal (TB) lepton mixing. Recently two of us studied the vacuum alignment of the Altarelli-Feruglio A 4 family symmetry model including additional flavons in the 1 and 1′′ representations, leading to so-called “trimaximal” neutrino mixing and allowing a potentially large reactor angle. Here we show how such a model may arise from a Supersymmetric (SUSY) Grand Unified Theory (GUT) based on SU(5), leading to sum rule bounds \( \left| s \right| \leqslant \frac{{{\theta_C}}}{3},\left| a \right| \leqslant \frac{1}{2}\left( {r + \frac{{{\theta_C}}}{3}} \right)\left| {\cos \;\delta } \right| \) (these predictions are based upon the assumption of a Georgi-Jarlskog relation), where s, a, r parameterise the solar, atmospheric and reactor angle deviations from their TB mixing values, δ is the CP violating oscillation phase, and θ C is the Cabibbo angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  2. RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  3. T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  4. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  5. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012)131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum to ‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011)109401 [arXiv:1108.1376] [INSPIRE].

    Article  ADS  Google Scholar 

  7. G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].

    ADS  Google Scholar 

  8. P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D.-G. Lee and R. Mohapatra, An SO(10) × S 4 scenario for naturally degenerate neutrinos, Phys. Lett. B 329 (1994) 463 [hep-ph/9403201] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Mohapatra, M. Parida and G. Rajasekaran, High scale mixing unification and large neutrino mixing angles, Phys. Rev. D 69 (2004) 053007 [hep-ph/0301234] [INSPIRE].

    ADS  Google Scholar 

  11. C. Hagedorn, M. Lindner and R. Mohapatra, S 4 flavor symmetry and fermion masses: Towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [INSPIRE].

    Article  ADS  Google Scholar 

  12. E. Ma, Suitability of A 4 as a Family Symmetry in Grand Unification, Mod. Phys. Lett. A 21 (2006) 2931 [hep-ph/0607190] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S.F. King and M. Malinsky, Towards a complete theory of fermion masses and mixings with SO(3) family symmetry and 5 − D SO(10) unification, JHEP 11 (2006) 071 [hep-ph/0608021] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Y. Cai and H.-B. Yu, A SO(10) GUT Model with S4 Flavor Symmetry, Phys. Rev. D 74 (2006) 115005 [hep-ph/0608022] [INSPIRE].

    ADS  Google Scholar 

  15. S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Morisi, M. Picariello and E. Torrente-Lujan, Model for fermion masses and lepton mixing in SO(10) × A 4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [INSPIRE].

    ADS  Google Scholar 

  17. M.-C. Chen and K. Mahanthappa, CKM and Tri-bimaximal MNS Matrices in a SU(5) × (d) T Model, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Luhn, S. Nasri and P. Ramond, Tri-bimaximal neutrino mixing and the family symmetry semidirect product of Z(7) and Z(3), Phys. Lett. B 652 (2007) 27 [arXiv:0706.2341] [INSPIRE].

    Article  ADS  Google Scholar 

  19. W. Grimus and H. Kuhbock, Embedding the Zee-Wolfenstein neutrino mass matrix in an SO(10) × A 4 GUT scenario, Phys. Rev. D 77 (2008) 055008 [arXiv:0710.1585] [INSPIRE].

    ADS  Google Scholar 

  20. F. Bazzocchi, S. Morisi and M. Picariello, Embedding A 4 into left-right flavor symmetry: Tribimaximal neutrino mixing and fermion hierarchy, Phys. Lett. B 659 (2008) 628 [arXiv:0710.2928] [INSPIRE].

    Article  ADS  Google Scholar 

  21. G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE].

    Article  ADS  Google Scholar 

  22. F. Bazzocchi, S. Morisi, M. Picariello and E. Torrente-Lujan, Embedding A 4 into SU(3) × U(1) flavor symmetry: Large neutrino mixing and fermion mass hierarchy in SO(10) GUT, J. Phys. G 36 (2009) 015002 [arXiv:0802.1693] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Parida, Intermediate left-right gauge symmetry, unification of couplings and fermion masses in SUSY SO(10) × S 4, Phys. Rev. D 78 (2008) 053004 [arXiv:0804.4571] [INSPIRE].

    ADS  Google Scholar 

  24. F. Bazzocchi, M. Frigerio and S. Morisi, Fermion masses and mixing in models with SO(10) × A 4 symmetry, Phys. Rev. D 78 (2008) 116018 [arXiv:0809.3573] [INSPIRE].

    ADS  Google Scholar 

  25. C. Hagedorn, M.A. Schmidt and A.Y. Smirnov, Lepton Mixing and Cancellation of the Dirac Mass Hierarchy in SO(10) GUTs with Flavor Symmetries T(7) and Sigma(81), Phys. Rev. D 79 (2009) 036002 [arXiv:0811.2955] [INSPIRE].

    ADS  Google Scholar 

  26. H. Ishimori, Y. Shimizu and M. Tanimoto, S 4 Flavor Symmetry of Quarks and Leptons in SU(5) GUT, Prog. Theor. Phys. 121 (2009) 769 [arXiv:0812.5031] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. F. Bazzocchi, L. Merlo and S. Morisi, Fermion Masses and Mixings in a S(4)-based Model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Ciafaloni, M. Picariello, E. Torrente-Lujan and A. Urbano, Neutrino masses and tribimaximal mixing in Minimal renormalizable SUSY SU(5) Grand Unified Model with A 4 Flavor symmetry, Phys. Rev. D 79 (2009) 116010 [arXiv:0901.2236] [INSPIRE].

    ADS  Google Scholar 

  29. S.F. King and C. Luhn, A new family symmetry for SO(10) GUTs, Nucl. Phys. B 820 (2009) 269 [arXiv:0905.1686] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. B. Dutta, Y. Mimura and R. Mohapatra, An SO(10) Grand Unified Theory of Flavor, JHEP 05 (2010) 034 [arXiv:0911.2242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. S.F. King and C. Luhn, A Supersymmetric Grand Unified Theory of Flavour with PSL(2)(7) × SO(10), Nucl. Phys. B 832 (2010) 414 [arXiv:0912.1344] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of flavour with S 4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [INSPIRE].

    Article  ADS  Google Scholar 

  33. I.K. Cooper, S.F. King and C. Luhn, SUSY SU(5) with singlet plus adjoint matter and A 4 family symmetry, Phys. Lett. B 690 (2010) 396 [arXiv:1004.3243] [INSPIRE].

    Article  ADS  Google Scholar 

  34. H. Ishimori, K. Saga, Y. Shimizu and M. Tanimoto, Tri-bimaximal Mixing and Cabibbo Angle in S 4 Flavor Model with SUSY, Phys. Rev. D 81 (2010) 115009 [arXiv:1004.5004] [INSPIRE].

    ADS  Google Scholar 

  35. S. Antusch, S.F. King and M. Spinrath, Measurable Neutrino Mass Scale in A 4 × SU(5), Phys. Rev. D 83 (2011) 013005 [arXiv:1005.0708] [INSPIRE].

    ADS  Google Scholar 

  36. G.-J. Ding, SUSY adjoint SU(5) grand unified model with S 4 flavor symmetry, Nucl. Phys. B 846 (2011) 394 [arXiv:1006.4800] [INSPIRE].

    Article  ADS  Google Scholar 

  37. K.M. Patel, An SO(10) × S 4 Model of Quark-Lepton Complementarity, Phys. Lett. B 695 (2011) 225 [arXiv:1008.5061] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. Altarelli and G. Blankenburg, Different SO(10) Paths to Fermion Masses and Mixings, JHEP 03 (2011) 133 [arXiv:1012.2697] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Escobar, Flavor Δ(54) in SU(5) SUSY Model, Phys. Rev. D 84 (2011) 073009 [arXiv:1102.1649] [INSPIRE].

    ADS  Google Scholar 

  40. S. King, Neutrino mass models, Rept. Prog. Phys. 67 (2004) 107 [hep-ph/0310204] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Mohapatra et al., Theory of neutrinos: A White paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Mohapatra and A. Smirnov, Neutrino Mass and New Physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE].

    Article  ADS  Google Scholar 

  43. C.H. Albright, Overview of Neutrino Mixing Models and Ways to Differentiate among Them, arXiv:0905.0146 [INSPIRE].

  44. G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

    Article  ADS  Google Scholar 

  45. H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. S. Antusch, S.F. King and M. Malinsky, Third Family Corrections to Tri-bimaximal Lepton Mixing and a New Sum Rule, Phys. Lett. B 671 (2009) 263 [arXiv:0711.4727] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Antusch, S.F. King and M. Malinsky, Third Family Corrections to Quark and Lepton Mixing in SUSY Models with non-Abelian Family Symmetry, JHEP 05 (2008) 066 [arXiv:0712.3759] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Boudjemaa and S. King, Deviations from Tri-bimaximal Mixing: Charged Lepton Corrections and Renormalization Group Running, Phys. Rev. D 79 (2009) 033001 [arXiv:0808.2782] [INSPIRE].

    ADS  Google Scholar 

  49. S. Antusch, S.F. King and M. Malinsky, Perturbative Estimates of Lepton Mixing Angles in Unified Models, Nucl. Phys. B 820 (2009) 32 [arXiv:0810.3863] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Antusch and V. Maurer, Large neutrino mixing angle \( \theta_{{13}}^{\text{MNS}} \) and quark-lepton mass ratios in unified flavour models, Phys. Rev. D 84 (2011) 117301 [arXiv:1107.3728] [INSPIRE].

    ADS  Google Scholar 

  51. D. Marzocca, S.T. Petcov, A. Romanino and M. Spinrath, Sizeable θ 13 from the Charged Lepton Sector in SU(5), (Tri-)Bimaximal Neutrino Mixing and Dirac CP-violation, JHEP 11 (2011) 009 [arXiv:1108.0614] [INSPIRE].

    Article  ADS  Google Scholar 

  52. H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].

    Article  ADS  Google Scholar 

  53. S. King, Tri-bimaximal Neutrino Mixing and θ 13, Phys. Lett. B 675 (2009) 347 [arXiv:0903.3199] [INSPIRE].

    Article  ADS  Google Scholar 

  54. H.-J. He and F.-R. Yin, Common Origin of μ − τ and CP Breaking in Neutrino Seesaw, Baryon Asymmetry and Hidden Flavor Symmetry, Phys. Rev. D 84 (2011) 033009 [arXiv:1104.2654] [INSPIRE].

    ADS  Google Scholar 

  55. Z.-Z. Xing, The T2K Indication of Relatively Large θ 13 and a Natural Perturbation to the Democratic Neutrino Mixing Pattern, Chin. Phys. C 36 (2012) 101 [arXiv:1106.3244] [INSPIRE].

    Article  ADS  Google Scholar 

  56. N. Qin and B.Q. Ma, A New relation between quark and lepton mixing matrices, Phys. Lett. B 702 (2011) 143 [arXiv:1106.3284] [INSPIRE].

    Article  ADS  Google Scholar 

  57. Y.-j. Zheng and B.-Q. Ma, Re-evaluation of neutrino mixing pattern according to latest T2K result, Eur. Phys. J. Plus 127 (2012) 7 [arXiv:1106.4040] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Zhou, Relatively large theta13 and nearly maximal theta23 from the approximate S 3 symmetry of lepton mass matrices, Phys. Lett. B 704 (2011) 291 [arXiv:1106.4808] [INSPIRE].

    Article  ADS  Google Scholar 

  59. T. Araki, Getting at large θ 13 with almost maximal θ 23 from tri-bimaximal mixing, Phys. Rev. D 84 (2011) 037301 [arXiv:1106.5211] [INSPIRE].

    ADS  Google Scholar 

  60. N. Haba and R. Takahashi, Predictions via large θ 13 from cascades, Phys. Lett. B 702 (2011) 388 [arXiv:1106.5926] [INSPIRE].

    Article  ADS  Google Scholar 

  61. D. Meloni, Bimaximal mixing and large theta13 in a SUSY SU(5) model based on S 4, JHEP 10 (2011) 010 [arXiv:1107.0221] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. Morisi, K.M. Patel and E. Peinado, Model for T2K indication with maximal atmospheric angle and tri-maximal solar angle, Phys. Rev. D 84 (2011) 053002 [arXiv:1107.0696] [INSPIRE].

    ADS  Google Scholar 

  63. W. Chao and Y.-j. Zheng, Relatively Large θ 13 from Modification to the Tri-bimaximal, Bimaximal and Democratic Neutrino Mixing Matrices, arXiv:1107.0738 [INSPIRE].

  64. H. Zhang and S. Zhou, Radiative corrections and explicit perturbations to the tetra-maximal neutrino mixing with large θ 13, Phys. Lett. B 704 (2011) 296 [arXiv:1107.1097] [INSPIRE].

    Article  ADS  Google Scholar 

  65. X. Chu, M. Dhen and T. Hambye, Relations among neutrino observables in the light of a large θ 13 angle, JHEP 11 (2011) 106 [arXiv:1107.1589] [INSPIRE].

    Article  ADS  Google Scholar 

  66. P. Bhupal Dev, R. Mohapatra and M. Severson, Neutrino Mixings in SO(10) with Type II Seesaw and θ 13, Phys. Rev. D 84 (2011) 053005 [arXiv:1107.2378] [INSPIRE].

    ADS  Google Scholar 

  67. R.d.A. Toorop, F. Feruglio and C. Hagedorn, Discrete Flavour Symmetries in Light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].

    Article  ADS  Google Scholar 

  68. W. Rodejohann, H. Zhang and S. Zhou, Systematic search for successful lepton mixing patterns with nonzero θ 13, Nucl. Phys. B 855 (2012) 592 [arXiv:1107.3970] [INSPIRE].

    Article  ADS  Google Scholar 

  69. Q.-H. Cao, S. Khalil, E. Ma and H. Okada, Nonzero θ 13 for Neutrino Mixing in a Supersymmetric B-L Gauge Model with T 7 Lepton Flavor Symmetry, Phys. Rev. D 84 (2011)071302 [arXiv:1108.0570] [INSPIRE].

    ADS  Google Scholar 

  70. S.-F. Ge, D.A. Dicus and W.W. Repko, Residual Symmetries for Neutrino Mixing with a Large θ 13 and Nearly Maximal δ D , Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964] [INSPIRE].

    Article  ADS  Google Scholar 

  71. F. Bazzocchi, Tri-Permuting Mixing Matrix and predictions for θ 13, arXiv:1108.2497 [INSPIRE].

  72. S. Antusch, S.F. King, C. Luhn and M. Spinrath, Trimaximal mixing with predicted θ 13 from a new type of constrained sequential dominance, Nucl. Phys. B 856 (2012) 328 [arXiv:1108.4278] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Rashed and A. Datta, The charged lepton mass matrix and non-zero θ 13 with TeV scale New Physics, Phys. Rev. D 85 (2012) 035019 [arXiv:1109.2320] [INSPIRE].

    ADS  Google Scholar 

  74. P. Ludl, S. Morisi and E. Peinado, The Reactor mixing angle and CP-violation with two texture zeros in the light of T2K, Nucl. Phys. B 857 (2012) 411 [arXiv:1109.3393] [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Aranda, C. Bonilla and A.D. Rojas, Neutrino masses generation in a Z 4 model, Phys. Rev. D 85 (2012) 036004 [arXiv:1110.1182] [INSPIRE].

    ADS  Google Scholar 

  76. D. Meloni, Large θ 13 from a model with broken L e − L μ − L τ symmetry, JHEP 02 (2012) 090 [arXiv:1110.5210] [INSPIRE].

    Article  ADS  Google Scholar 

  77. S. Dev, S. Gupta, R.R. Gautam and L. Singh, Near Maximal Atmospheric Mixing in Neutrino Mass Matrices with Two Vanishing Minors, Phys. Lett. B 706 (2011) 168 [arXiv:1111.1300] [INSPIRE].

    Article  ADS  Google Scholar 

  78. A. Rashed, Deviation from Tri-Bimaximal Mixing and Large Reactor Mixing Angle, arXiv:1111.3072 [INSPIRE].

  79. I. de Medeiros Varzielas, Non-Abelian family symmetries in Pati-Salam unification, JHEP 01 (2012) 097 [arXiv:1111.3952] [INSPIRE].

    Article  Google Scholar 

  80. R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

    Article  ADS  Google Scholar 

  81. S.F. King and C. Luhn, A 4 models of tri-bimaximal-reactor mixing, JHEP 03 (2012) 036 [arXiv:1112.1959] [INSPIRE].

    Article  ADS  Google Scholar 

  82. T. Araki and Y. Li, Q 6 flavor symmetry model for the extension of the minimal standard model by three right-handed sterile neutrinos, Phys. Rev. D 85 (2012) 065016 [arXiv:1112.5819] [INSPIRE].

    ADS  Google Scholar 

  83. S. Gupta, A.S. Joshipura and K.M. Patel, Minimal extension of tri-bimaximal mixing and generalized Z 2 × Z 2 symmetries, Phys. Rev. D 85 (2012) 031903 [arXiv:1112.6113] [INSPIRE].

    ADS  Google Scholar 

  84. G.-J. Ding, TFH Mixing Patterns, Large θ 13 and Δ(96) Flavor Symmetry, Nucl. Phys. B 862 (2012)1 [arXiv:1201.3279] [INSPIRE].

    Article  ADS  Google Scholar 

  85. H. Ishimori and T. Kobayashi, Lepton flavor models with discrete prediction of θ 13, arXiv:1201.3429 [INSPIRE].

  86. S. Dev, R.R. Gautam and L. Singh, Broken S 3 Symmetry in the Neutrino Mass Matrix and Non-Zero θ 13, Phys. Lett. B 708 (2012) 284 [arXiv:1201.3755] [INSPIRE].

    Article  ADS  Google Scholar 

  87. P. Bhupal Dev, B. Dutta, R. Mohapatra and M. Severson, θ 13 and Proton Decay in a Minimal SO(10) × S 4 model of Flavor, arXiv:1202.4012 [INSPIRE].

  88. S. King, Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal mixing, Phys. Lett. B 659 (2008) 244 [arXiv:0710.0530] [INSPIRE].

    Article  ADS  Google Scholar 

  89. N. Haba, A. Watanabe and K. Yoshioka, Twisted flavors and tri/bi-maximal neutrino mixing, Phys. Rev. Lett. 97 (2006) 041601 [hep-ph/0603116] [INSPIRE].

    Article  ADS  Google Scholar 

  90. X.-G. He and A. Zee, Minimal modification to the tri-bimaximal neutrino mixing, Phys. Lett. B 645 (2007) 427 [hep-ph/0607163] [INSPIRE].

    Article  ADS  Google Scholar 

  91. W. Grimus and L. Lavoura, A Model for trimaximal lepton mixing, JHEP 09 (2008) 106 [arXiv:0809.0226] [INSPIRE].

    Article  ADS  Google Scholar 

  92. H. Ishimori, Y. Shimizu, M. Tanimoto and A. Watanabe, Neutrino masses and mixing from S 4 flavor twisting, Phys. Rev. D 83 (2011) 033004 [arXiv:1010.3805] [INSPIRE].

    ADS  Google Scholar 

  93. X.-G. He and A. Zee, Minimal Modification to Tri-bimaximal Mixing, Phys. Rev. D 84 (2011) 053004 [arXiv:1106.4359] [INSPIRE].

    ADS  Google Scholar 

  94. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  95. S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A 4 and S 4 models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE].

    Article  ADS  Google Scholar 

  96. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].

    ADS  Google Scholar 

  97. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].

    Article  ADS  Google Scholar 

  98. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. C. Lam, The Unique Horizontal Symmetry of Leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [INSPIRE].

    ADS  Google Scholar 

  100. S.F. King and C. Luhn, On the origin of neutrino flavour symmetry, JHEP 10 (2009) 093 [arXiv:0908.1897] [INSPIRE].

    Article  ADS  Google Scholar 

  101. B. Brahmachari, S. Choubey and M. Mitra, The A 4 flavor symmetry and neutrino phenomenology, Phys. Rev. D 77 (2008) 073008 [Erratum ibid. D 77 (2008) 119901] [arXiv:0801.3554] [INSPIRE].

    ADS  Google Scholar 

  102. E. Ma and D. Wegman, Nonzero θ 13 for neutrino mixing in the context of A 4 symmetry, Phys. Rev. Lett. 107 (2011) 061803 [arXiv:1106.4269] [INSPIRE].

    Article  ADS  Google Scholar 

  103. Y. Shimizu, M. Tanimoto and A. Watanabe, Breaking Tri-bimaximal Mixing and Large θ 13, Prog. Theor. Phys. 126 (2011) 81 [arXiv:1105.2929] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  104. C.H. Albright and S. Barr, Lifting a realistic SO(10) grand unified model to five-dimensions, Phys. Rev. D 67 (2003) 013002 [hep-ph/0209173] [INSPIRE].

    ADS  Google Scholar 

  105. R. de Adelhart Toorop, F. Bazzocchi and L. Merlo, The Interplay Between GUT and Flavour Symmetries in a Pati-Salam × S 4 Model, JHEP 08 (2010) 001 [arXiv:1003.4502] [INSPIRE].

    Article  Google Scholar 

  106. G. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    Article  ADS  Google Scholar 

  107. C. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  108. J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  109. S. King, Constructing the large mixing angle MNS matrix in seesaw models with right-handed neutrino dominance, JHEP 09 (2002) 011 [hep-ph/0204360] [INSPIRE].

    Article  ADS  Google Scholar 

  110. S. Antusch and S. King, Sequential dominance, New J. Phys. 6 (2004) 110 [hep-ph/0405272] [INSPIRE].

    Article  ADS  Google Scholar 

  111. S. Antusch, S. Boudjemaa and S. King, Neutrino Mixing Angles in Sequential Dominance to NLO and NNLO, JHEP 09 (2010) 096 [arXiv:1003.5498] [INSPIRE].

    Article  ADS  Google Scholar 

  112. S.F. King, Vacuum misalignment corrections to tri-bimaximal mixing and form dominance, JHEP 01 (2011) 115 [arXiv:1011.6167] [INSPIRE].

    Article  ADS  Google Scholar 

  113. S. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].

    Article  ADS  Google Scholar 

  114. I. Masina, A Maximal atmospheric mixing from a maximal CP-violating phase, Phys. Lett. B 633 (2006) 134 [hep-ph/0508031] [INSPIRE].

    Article  ADS  Google Scholar 

  115. S. Antusch and S.F. King, Charged lepton corrections to neutrino mixing angles and CP phases revisited, Phys. Lett. B 631 (2005) 42 [hep-ph/0508044] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain K. Cooper.

Additional information

ArXiv ePrint: 1203.1324

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, I.K., King, S.F. & Luhn, C. A4 × SU(5) SUSY GUT of flavour with trimaximal neutrino mixing. J. High Energ. Phys. 2012, 130 (2012). https://doi.org/10.1007/JHEP06(2012)130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)130

Keywords

Navigation