Skip to main content
Log in

Towards the F-theorem: \( \mathcal{N} = 2 \) field theories on the three-sphere

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

For 3-dimensional field theories with \( \mathcal{N} = 2 \) supersymmetry the Euclidean path integrals on the three-sphere can be calculated using the method of localization; they reduce to certain matrix integrals that depend on the R-charges of the matter fields. We solve a number ofsuch large N matrix models and calculate the free energy F as a function of the trial R-charges consistent with the marginality of the super potential. In all our \( \mathcal{N} = 2 \) superconformal examples, the local maximization of F yields answers that scale as N 3/2 and agree with the dual M-theory backgrounds AdS 4 × Y, where Y are 7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local F-maximization is equivalent to the minimization of the volume of Y over the space of Sasakian metrics, a procedure also referred to as Z-minimization. Moreover, we find that the functions F and Z are related for any trial R-charges. In the models we study F is positive and decreases along RG flows. We therefore propose the “F-theorem” that we hope applies to all 3-d field theories: the finite part of the free energy on the three-sphere decreases along RG trajectories and is stationary at RG fixed points. We also show that in an infinite class of Chern-Simons-matter gauge theories where the Chern-Simons levels do not sum to zero, the free energy grows as N 5/3 at large N. This non-trivial scaling matches that of the free energy of the gravity duals in type IIA string theory with Romans mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  4. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} = 6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, \( \mathcal{N} = 4 \) Superconformal Chern-Simons Theories with Hyper and Twisted Hyper Multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons Theories and AdS 4 /CFT 3 Correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, arXiv:1007.3837 [SPIRES].

  10. C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [SPIRES].

    ADS  Google Scholar 

  11. D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, arXiv:1012.3210 [SPIRES].

  12. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [SPIRES].

    Article  ADS  Google Scholar 

  13. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  15. R.C. Santamaria, M. Mariño and P. Putrov, Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories, arXiv:1011.6281 [SPIRES].

  16. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  19. I.R. Klebanov and A.A. Tseytlin, Entropy of Near-Extremal Black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  21. K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, Commun. Math. Phys. 268 (2006) 39 [hep-th/0503183] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A. Butti and A. Zaffaroni, R-charges from toric diagrams and the equivalence of a-maximization and Z-minimization, JHEP 11 (2005) 019 [hep-th/0506232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. D.L. Jafferis and A. Tomasiello, A simple class of \( \mathcal{N} = 3 \) gauge/gravity duals, JHEP 10 (2008) 101 [arXiv:0808.0864] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  27. D. Martelli and J. Sparks, AdS 4 /CFT 3 duals from M2-branes at hypersurface singularities and their deformations, JHEP 12 (2009) 017 [arXiv:0909.2036] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. D.L. Jafferis, Quantum corrections to \( \mathcal{N} = 2 \) Chern-Simons theories with flavor and their AdS4 duals, arXiv:0911.4324 [SPIRES].

  30. O. Aharony, D. Jafferis, A. Tomasiello and A. Zaffaroni, Massive type IIA string theory cannot be strongly coupled, JHEP 11 (2010) 047 [arXiv:1007.2451] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Suyama, On Large-N Solution of ABJM Theory, Nucl. Phys. B 834 (2010) 50 [arXiv:0912.1084] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. E. Witten, \( {\text{SL}}\left( {2,\mathbb{Z}} \right) \) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [SPIRES].

  34. Y. Imamura and S. Yokoyama, \( \mathcal{N} = 4 \) Chern-Simons theories and wrapped M-branes in their gravity duals, Prog. Theor. Phys. 121 (2009) 915 [arXiv:0812.1331] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  35. Y. Imamura, Monopole operators in \( \mathcal{N} = 4 \) Chern-Simons theories and wrapped M2-branes, Prog. Theor. Phys. 121 (2009) 1173 [arXiv:0902.4173] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  36. I.R. Klebanov, S.S. Pufu and T. Tesileanu, Membranes with Topological Charge and AdS 4 /CFT 3 Correspondence, Phys. Rev. D 81 (2010) 125011 [arXiv:1004.0413] [SPIRES].

    ADS  Google Scholar 

  37. N. Benishti, D. Rodriguez-Gomez and J. Sparks, Baryonic symmetries and M5 branes in the AdS 4 /CFT 3 correspondence, JHEP 07 (2010) 024 [arXiv:1004.2045] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Fabbri et al., 3D superconformal theories from Sasakian seven-manifolds: New nontrivial evidences for AdS 4 /CFT 3, Nucl. Phys. B 577 (2000) 547 [hep-th/9907219] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. J.P. Gauntlett, D. Martelli, J. Sparks and S.-T. Yau, Obstructions to the existence of Sasaki-Einstein metrics, Commun. Math. Phys. 273 (2007) 803 [hep-th/0607080] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. A. Bergman and C.P. Herzog, The volume of some non-spherical horizons and the AdS/CFT correspondence, JHEP 01 (2002) 030 [hep-th/0108020] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. Y. Tachikawa and B. Wecht, Explanation of the Central Charge Ratio 27/32 in Four-Dimensional Renormalization Group Flows between Superconformal Theories, Phys. Rev. Lett. 103 (2009) 061601 [arXiv:0906.0965] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 [hep-th/0107220] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. N.P. Warner, Some new extrema of the scalar potential of gauged \( \mathcal{N} = 8 \) supergravity, Phys. Lett. B 128 (1983) 169 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. I. Klebanov, T. Klose and A. Murugan, AdS 4 /CFT 3 Squashed, Stretched and Warped, JHEP 03 (2009) 140 [arXiv:0809.3773] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. C. Ahn, Holographic Supergravity Dual to Three Dimensional N = 2 Gauge Theory, JHEP 08 (2008) 083 [arXiv:0806.1420] [SPIRES].

    Article  ADS  Google Scholar 

  48. S. Cremonesi, Type IIB construction of flavoured ABJ(M) and fractional M2 branes, JHEP 01 (2011) 076 [arXiv:1007.4562] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. D. Gaiotto and A. Tomasiello, Perturbing gauge/gravity duals by a Romans mass, J. Phys. A 42 (2009) 465205 [arXiv:0904.3959] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. M. Petrini and A. Zaffaroni, \( \mathcal{N} = 2 \) solutions of massive type IIA and their Chern-Simons duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. D. Lüst and D. Tsimpis, New supersymmetric AdS 4 type-II vacua, JHEP 09 (2009) 098 [arXiv:0906.2561] [SPIRES].

    Article  Google Scholar 

  53. S. Cheon, D. Gang, S. Kim and J. Park, Refined test of AdS 4 /CFT 3 correspondence for \( \mathcal{N} = 2,3 \) theories, JHEP 05 (2011) 027 [arXiv:1102.4273] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Hanany and A. Zaffaroni, Tilings, Chern-Simons Theories and M2 Branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS 4 /CFT 3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  56. S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, Towards M2-brane Theories for Generic Toric Singularities, JHEP 12 (2008) 110 [arXiv:0809.3237] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. S. Franco, I.R. Klebanov and D. Rodriguez-Gomez, M2-branes on Orbifolds of the Cone over Q 1,1,1, JHEP 08 (2009) 033 [arXiv:0903.3231] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. J. Davey, A. Hanany, N. Mekareeya and G. Torri, Phases of M2-brane Theories, JHEP 06 (2009) 025 [arXiv:0903.3234] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. A. Amariti, D. Forcella, L. Girardello and A. Mariotti, 3D Seiberg-like Dualities and M2 Branes, JHEP 05 (2010) 025 [arXiv:0903.3222] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, arXiv:1102.5289[SPIRES].

  61. S. Cheon, H. Kim and N. Kim, Calculating the partition function of \( \mathcal{N} = 2 \) Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silviu S. Pufu.

Additional information

ArXiv ePrint: 1103.1181

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafferis, D.L., Klebanov, I.R., Pufu, S.S. et al. Towards the F-theorem: \( \mathcal{N} = 2 \) field theories on the three-sphere. J. High Energ. Phys. 2011, 102 (2011). https://doi.org/10.1007/JHEP06(2011)102

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)102

Keywords

Navigation