Skip to main content
Log in

QCD-like theories at nonzero temperature and density

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the properties of hot and/or dense matter in QCD-like theories with quarks in a (pseudo)real representation of the gauge group using the Nambu-Jona-Lasinio model. The gauge dynamics is modeled using a simple lattice spin model with nearest-neighbor interactions. We first keep our discussion as general as possible, and only later focus on theories with adjoint quarks of two or three colors. Calculating the phase diagram in the plane of temperature and quark chemical potential, it is qualitatively confirmed that the critical temperature of the chiral phase transition is much higher than the deconfinement transition temperature. At a chemical potential equal to half of the diquark mass in the vacuum, a diquark Bose-Einstein condensation (BEC) phase transition occurs. In the two-color case, a Ginzburg-Landau expansion is used to study the tetracritical behavior around the intersection point of the deconfinement and BEC transition lines, which are both of second order. We obtain a compact expression for the expectation value of the Polyakov loop in an arbitrary representation of the gauge group (for any number of colors), which allows us to study Casimir scaling at both nonzero temperature and chemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.G. Alford, A. Kapustin and F. Wilczek, Imaginary chemical potential and finite fermion density on the lattice, Phys. Rev. D 59 (1999) 054502 [hep-lat/9807039] [SPIRES].

    ADS  Google Scholar 

  2. D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592 [hep-ph/0005225] [SPIRES].

    Article  ADS  Google Scholar 

  3. J.B. Kogut, M.A. Stephanov and D. Toublan, On two-color QCD with baryon chemical potential, Phys. Lett. B 464 (1999) 183 [hep-ph/9906346] [SPIRES].

    ADS  Google Scholar 

  4. J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [SPIRES].

    Article  ADS  Google Scholar 

  5. M.E. Peskin, The Alignment of the Vacuum in Theories of Technicolor, Nucl. Phys. B 175 (1980) 197 [SPIRES].

    Article  ADS  Google Scholar 

  6. J. Bijnens and J. Lu, Technicolor and other QCD-like theories at next-to-next-to-leading order, JHEP 11 (2009) 116 [arXiv:0910.5424] [SPIRES].

    Article  ADS  Google Scholar 

  7. L.A. Kondratyuk, M.M. Giannini and M.I. Krivoruchenko, The SU(2) color superconductivity, Phys. Lett. B 269 (1991) 139 [SPIRES].

    ADS  Google Scholar 

  8. C. Ratti and W. Weise, Thermodynamics of two-colour QCD and the Nambu Jona-Lasinio model, Phys. Rev. D 70 (2004) 054013 [hep-ph/0406159] [SPIRES].

    ADS  Google Scholar 

  9. G.-f. Sun, L. He and P. Zhuang, BEC-BCS Crossover in the Nambu-Jona-Lasinio Model of QCD, Phys. Rev. D 75 (2007) 096004 [hep-ph/0703159] [SPIRES].

    ADS  Google Scholar 

  10. T. Brauner, K. Fukushima and Y. Hidaka, Two-color quark matter: U(1)A restoration, superfluidity and quarkyonic phase, Phys. Rev. D 80 (2009) 074035 [arXiv:0907.4905] [SPIRES].

    ADS  Google Scholar 

  11. J.O. Andersen and T. Brauner, Phase diagram of two-color quark matter at nonzero baryon and isospin density, Phys. Rev. D 81 (2010) 096004 [arXiv:1001.5168] [SPIRES].

    ADS  Google Scholar 

  12. H. Nishimura and M.C. Ogilvie, A PNJL Model for Adjoint Fermions with Periodic Boundary Conditions, Phys. Rev. D 81 (2010) 014018 [arXiv:0911.2696] [SPIRES].

    ADS  Google Scholar 

  13. A. Mócsy, F. Sannino and K. Tuominen, Confinement versus Chiral Symmetry, Phys. Rev. Lett. 92 (2004) 182302 [hep-ph/0308135] [SPIRES].

    Article  ADS  Google Scholar 

  14. F. Sannino and K. Tuominen, Tetracritical behavior in strongly interacting theories, Phys. Rev. D 70 (2004) 034019 [hep-ph/0403175] [SPIRES].

    ADS  Google Scholar 

  15. A. Gocksch and M. Ogilvie, An effective strong coupling lattice model for finite temperature QCD, Phys. Lett. B 141 (1984) 407 [SPIRES].

    ADS  Google Scholar 

  16. A. Dumitru, Y. Hatta, J. Lenaghan, K. Orginos and R.D. Pisarski, Deconfining phase transition as a matrix model of renormalized Polyakov loops, Phys. Rev. D 70 (2004) 034511 [hep-th/0311223] [SPIRES].

    ADS  Google Scholar 

  17. K. Fukushima and Y. Hidaka, A model study of the sign problem in the mean-field approximation, Phys. Rev. D 75 (2007) 036002 [hep-ph/0610323] [SPIRES].

    ADS  Google Scholar 

  18. K. Fukushima, Relation between the Polyakov loop and the chiral order parameter at strong coupling, Phys. Rev. D 68 (2003) 045004 [hep-ph/0303225] [SPIRES].

    ADS  Google Scholar 

  19. S. Gupta, K. Huebner and O. Kaczmarek, Renormalized Polyakov loops in many representations, Phys. Rev. D 77 (2008) 034503 [arXiv:0711.2251] [SPIRES].

    ADS  Google Scholar 

  20. H. Abuki and K. Fukushima, Gauge dynamics in the PNJL model: Color neutrality and Casimir scaling, Phys. Lett. B 676 (2009) 57 [arXiv:0901.4821] [SPIRES].

    ADS  Google Scholar 

  21. K. Fukushima, Chiral effective model with the Polyakov loop, Phys. Lett. B 591 (2004) 277 [hep-ph/0310121] [SPIRES].

    ADS  Google Scholar 

  22. C. Ratti, M.A. Thaler and W. Weise, Phases of QCD: Lattice thermodynamics and a field theoretical model, Phys. Rev. D 73 (2006) 014019 [hep-ph/0506234] [SPIRES].

    ADS  Google Scholar 

  23. S. Roessner, C. Ratti and W. Weise, Polyakov loop, diquarks and the two-flavour phase diagram, Phys. Rev. D 75 (2007) 034007 [hep-ph/0609281] [SPIRES].

    ADS  Google Scholar 

  24. K. Fukushima, Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop, Phys. Rev. D 77 (2008) 114028 [arXiv:0803.3318] [SPIRES].

    ADS  Google Scholar 

  25. E. Megias, E. Ruiz Arriola and L.L. Salcedo, Polyakov loop in chiral quark models at finite temperature, Phys. Rev. D 74 (2006) 065005 [hep-ph/0412308] [SPIRES].

    ADS  Google Scholar 

  26. J.B. Kogut, J. Polonyi, H.W. Wyld and D.K. Sinclair, Hierarchical mass scales in lattice gauge theories with dynamical light fermions, Phys. Rev. Lett. 54 (1985) 1980 [SPIRES].

    Article  ADS  Google Scholar 

  27. F. Karsch and M. Lütgemeier, Deconfinement and chiral symmetry restoration in an SU(3) gauge theory with adjoint fermions, Nucl. Phys. B 550 (1999) 449 [hep-lat/9812023] [SPIRES].

    Article  ADS  Google Scholar 

  28. J. Engels, S. Holtmann and T. Schulze, Scaling and Goldstone effects in a QCD with two flavours of adjoint quarks, Nucl. Phys. B 724 (2005) 357 [hep-lat/0505008] [SPIRES].

    Article  ADS  Google Scholar 

  29. M. Ünsal, Abelian duality, confinement and chiral symmetry breaking in a SU(2) QCD-Like Theory, Phys. Rev. Lett. 100 (2008) 032005 [arXiv:0708.1772] [SPIRES].

    Article  ADS  Google Scholar 

  30. A. Lohwater, Introduction to Inequalities, Online e-book in PDF format, (1982).

  31. H. Georgi, Lie Algebras in Particle Physics, second edition Frontiers in Physics, Perseus Books, Reading Massachusetts U.S.A. (1999).

    Google Scholar 

  32. S. Hands et al., Numerical study of dense adjoint matter in two color QCD, Eur. Phys. J. C 17 (2000) 285 [hep-lat/0006018] [SPIRES].

    Article  ADS  Google Scholar 

  33. K. Fukushima and K. Iida, Larkin-Ovchinnikov-Fulde-Ferrell state in two-color quark matter, Phys. Rev. D 76 (2007) 054004 [arXiv:0705.0792] [SPIRES].

    ADS  Google Scholar 

  34. K. Splittorff, D.T. Son and M.A. Stephanov, QCD-like Theories at Finite Baryon and Isospin Density, Phys. Rev. D 64 (2001) 016003 [hep-ph/0012274] [SPIRES].

    ADS  Google Scholar 

  35. C. Vafa and E. Witten, Parity Conservation in QCD, Phys. Rev. Lett. 53 (1984) 535 [SPIRES].

    Article  ADS  Google Scholar 

  36. M. Buballa, NJL model analysis of quark matter at large density, Phys. Rept. 407 (2005) 205 [hep-ph/0402234] [SPIRES].

    Article  ADS  Google Scholar 

  37. J. Ambjørn, P. Olesen and C. Peterson, Stochastic Confinement and Dimensional Reduction: (I). Four-Dimensional SU(2) Lattice Gauge Theory, Nucl. Phys. B 240 (1984) 189 [SPIRES].

    Article  ADS  Google Scholar 

  38. L. Del Debbio, M. Faber, J. Greensite and Š. Olejník, Casimir Scaling vs. Abelian Dominance in QCD String Formation, Phys. Rev. D 53 (1996) 5891 [hep-lat/9510028] [SPIRES].

    ADS  Google Scholar 

  39. Y. Schröder, The static potential in QCD to two loops, Phys. Lett. B 447 (1999) 321 [hep-ph/9812205] [SPIRES].

    ADS  Google Scholar 

  40. C. Anzai, Y. Kiyo and Y. Sumino, Violation of Casimir Scaling for Static QCD Potential at Three-loop Order, arXiv:1004.1562 [SPIRES].

  41. S. Deldar, Static SU(3) potentials for sources in various representations, Phys. Rev. D 62 (2000) 034509 [hep-lat/9911008] [SPIRES].

    ADS  Google Scholar 

  42. G.S. Bali, Casimir scaling of SU(3) static potentials, Phys. Rev. D 62 (2000) 114503 [hep-lat/0006022] [SPIRES].

    ADS  Google Scholar 

  43. C. Piccioni, Casimir scaling in SU(2) lattice gauge theory, Phys. Rev. D 73 (2006) 114509 [hep-lat/0503021] [SPIRES].

    ADS  Google Scholar 

  44. V.I. Shevchenko and Y.A. Simonov, Casimir scaling as a test of QCD vacuum, Phys. Rev. Lett. 85 (2000) 1811 [hep-ph/0001299] [SPIRES].

    Article  ADS  Google Scholar 

  45. P.N. Meisinger, T.R. Miller and M.C. Ogilvie, Phenomenological equations of state for the quark-gluon plasma, Phys. Rev. D 65 (2002) 034009 [hep-ph/0108009] [SPIRES].

    ADS  Google Scholar 

  46. H.-M. Tsai and B. Müller, Phenomenology of the three-flavour PNJL model and thermal strange quark production, J. Phys. G 36 (2009) 075101 [arXiv:0811.2216] [SPIRES].

    ADS  Google Scholar 

  47. R.N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover Publications, New York U.S.A (2006).

    Google Scholar 

  48. S. Hands, S. Kim and J.-I. Skullerud, Deconfinement in dense 2-color QCD, Eur. Phys. J. C 48 (2006) 193 [hep-lat/0604004] [SPIRES].

    Article  ADS  Google Scholar 

  49. S. Hands, S. Kim and J.-I. Skullerud, Quarkyonic Phase in Dense Two Color Matter, Phys. Rev. D 81 (2010) 091502(R) [arXiv:1001.1682] [SPIRES].

    ADS  Google Scholar 

  50. M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, Reading, Massachusetts U.S.A. (1995).

    Google Scholar 

  51. L. McLerran and R.D. Pisarski, Phases of Cold, Dense Quarks at Large-N c , Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191] [SPIRES].

    ADS  Google Scholar 

  52. B.-J. Schaefer, J.M. Pawlowski and J. Wambach, The Phase Structure of the Polyakov-Quark-Meson Model, Phys. Rev. D 76 (2007) 074023 [arXiv:0704.3234] [SPIRES].

    ADS  Google Scholar 

  53. H. Abuki, R. Anglani, R. Gatto, G. Nardulli and M. Ruggieri, Chiral crossover, deconfinement and quarkyonic matter within a Nambu-Jona Lasinio model with the Polyakov loop, Phys. Rev. D 78 (2008) 034034 [arXiv:0805.1509] [SPIRES].

    ADS  Google Scholar 

  54. M. Creutz, On invariant integration over SU(N), J. Math. Phys. 19 (1978) 2043 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. J.B. Kogut, M. Snow and M. Stone, Mean field and Monte Carlo studies of SU(N) chiral models in three-dimensions, Nucl. Phys. B 200 (1982) 211 [SPIRES].

    Article  ADS  Google Scholar 

  56. P.H. Damgaard, The Free Energy of Higher Representation Sources in Lattice Gauge Theories, Phys. Lett. B 194 (1987) 107 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Brauner.

Additional information

ArXiv ePrint: 1005.2928

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Brauner, T. & Rischke, D.H. QCD-like theories at nonzero temperature and density. J. High Energ. Phys. 2010, 64 (2010). https://doi.org/10.1007/JHEP06(2010)064

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)064

Keywords

Navigation