Skip to main content
Log in

The stransverse mass, M T2, in special cases

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

This document describes some special cases in which the stransverse mass, M T2, may be calculated by non-iterative algorithms. The most notable special case is that in which the visible particles and the hypothesised invisible particles are massless — a situation relevant to its current usage in the Large Hadron Collider as a discovery variable, and a situation for which no analytic answer was previously known. We also derive an expression for M T2 in another set of new (though arguably less interesting) special cases in which the missing transverse momentum must point parallel or anti parallel to the visible momentum sum. In addition, we find new derivations for already known M T2 solutions in a manner that maintains manifest contralinear boost invariance throughout, providing new insights into old results. Along the way, we stumble across some unexpected results and make conjectures relating to geometric forms of M eff and H T and their relationship to M T2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].

    ADS  Google Scholar 

  2. A. Barr, C. Lester and P. Stephens, m T2 : the truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [SPIRES].

    ADS  Google Scholar 

  3. C. Lester and A. Barr, M TGen : mass scale measurements in pair-production at colliders, JHEP 12 (2007) 102 [arXiv:0708.1028] [SPIRES].

    Article  ADS  Google Scholar 

  4. W.S. Cho, J.E. Kim and J.-H. Kim, Amplification of endpoint structure for new particle mass measurement at the LHC, Phys. Rev. D 81 (2010) 095010 [arXiv:0912.2354] [SPIRES].

    ADS  Google Scholar 

  5. H.-C. Cheng and Z. Han, Minimal kinematic constraints and M T2, JHEP 12 (2008) 063 [arXiv:0810.5178] [SPIRES].

    Article  ADS  Google Scholar 

  6. D.R. Tovey, On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders, JHEP 04 (2008) 034 [arXiv:0802.2879] [SPIRES].

    Article  ADS  Google Scholar 

  7. A.J. Barr and C. Gwenlan, The race for supersymmetry: using M T2 for discovery, Phys. Rev. D 80 (2009) 074007 [arXiv:0907.2713] [SPIRES].

    ADS  Google Scholar 

  8. A.J. Barr, C. Gwenlan, C.G. Lester and C.J.S. Young, A comment on ‘Amplification of endpoint structure for new particle mass measurement at the LHC’, arXiv:1006.2568 [SPIRES].

  9. ATLAS collaboration, Early supersymmetry searches in channels with jets and missing transverse momentum with the ATLAS detector, Technical Report, ATLAS-COM-CONF-2010-066, CERN, Geneva Switzerland (2010).

  10. ATLAS collaboration, J.B.G. da Costa et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, arXiv:1102.5290 [SPIRES].

  11. W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Measuring the top quark mass with m T2 at the LHC, Phys. Rev. D 78 (2008) 034019 [arXiv:0804.2185] [SPIRES].

    ADS  Google Scholar 

  12. CDF collaboration, T. Aaltonen et al., Top quark mass measurement using m T2 in the dilepton channel at CDF, Phys. Rev. D 81 (2010) 031102 [arXiv:0911.2956] [SPIRES].

    ADS  Google Scholar 

  13. D.R. Tovey, Measuring the SUSY mass scale at the LHC, Phys. Lett. B 498 (2001) 1 [hep-ph/0006276] [SPIRES].

    ADS  Google Scholar 

  14. W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Measuring superparticle masses at hadron collider using the transverse mass kink, JHEP 02 (2008) 035 [arXiv:0711.4526] [SPIRES].

    Article  ADS  Google Scholar 

  15. A.J. Barr and C.G. Lester, A review of the mass measurement techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [SPIRES].

    ADS  Google Scholar 

  16. UA1 collaboration, G. Arnison et al., Experimental observation of isolated large transverse energy electrons with associated missing energy at \( \sqrt {s} = 540 \) GeV, Phys. Lett. B 122 (1983) 103 [SPIRES].

    ADS  Google Scholar 

  17. B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in non-universal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [SPIRES].

    Article  ADS  Google Scholar 

  18. A.J. Barr, C.G. Lester, M.A. Parker, B.C. Allanach and P. Richardson, Discovering anomaly-mediated supersymmetry at the LHC, JHEP 03 (2003) 045 [hep-ph/0208214] [SPIRES].

    Article  ADS  Google Scholar 

  19. W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino stransverse mass, Phys. Rev. Lett. 100 (2008) 171801 [arXiv:0709.0288] [SPIRES].

    Article  ADS  Google Scholar 

  20. B. Gripaios, Transverse observables and mass determination at hadron colliders, JHEP 02 (2008) 053 [arXiv:0709.2740] [SPIRES].

    Article  ADS  Google Scholar 

  21. A.J. Barr, B. Gripaios and C.G. Lester, Weighing wimps with kinks at colliders: invisible particle mass measurements from endpoints, JHEP 02 (2008) 014 [arXiv:0711.4008] [SPIRES].

    Article  ADS  Google Scholar 

  22. G.G. Ross and M. Serna, Mass determination of new states at hadron colliders, Phys. Lett. B 665 (2008) 212 [arXiv:0712.0943] [SPIRES].

    ADS  Google Scholar 

  23. M.M. Nojiri, G. Polesello and D.R. Tovey, A hybrid method for determining SUSY particle masses at the LHC with fully identified cascade decays, JHEP 05 (2008) 014 [arXiv:0712.2718] [SPIRES].

    Article  ADS  Google Scholar 

  24. M. Serna, A short comparison between m T2 and m CT , JHEP 06 (2008) 004 [arXiv:0804.3344] [SPIRES].

    Article  ADS  Google Scholar 

  25. A.J. Barr, G.G. Ross and M. Serna, The precision determination of invisible-particle masses at the LHC, Phys. Rev. D 78 (2008) 056006 [arXiv:0806.3224] [SPIRES].

    ADS  Google Scholar 

  26. W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, M T2 -assisted on-shell reconstruction of missing momenta and its application to spin measurement at the LHC, Phys. Rev. D 79 (2009) 031701 [arXiv:0810.4853] [SPIRES].

    ADS  Google Scholar 

  27. M. Burns, K. Kong, K.T. Matchev and M. Park, Using subsystem m T2 for complete mass determinations in decay chains with missing energy at hadron colliders, JHEP 03 (2009) 143 [arXiv:0810.5576] [SPIRES].

    Article  ADS  Google Scholar 

  28. A.J. Barr, A. Pinder and M. Serna, Precision determination of invisible-particle masses at the CERN LHC: II, Phys. Rev. D 79 (2009) 074005 [arXiv:0811.2138] [SPIRES].

    ADS  Google Scholar 

  29. A.J. Barr, B. Gripaios and C.G. Lester, Measuring the Higgs boson mass in dileptonic W-boson decays at hadron colliders, JHEP 07 (2009) 072 [arXiv:0902.4864] [SPIRES].

    Article  ADS  Google Scholar 

  30. A.J. Barr, B. Gripaios and C.G. Lester, Transverse masses and kinematic constraints: from the boundary to the crease, JHEP 11 (2009) 096 [arXiv:0908.3779] [SPIRES].

    Article  ADS  Google Scholar 

  31. G. Polesello and D.R. Tovey, Supersymmetric particle mass measurement with the boost-corrected contransverse mass, JHEP 03 (2010) 030 [arXiv:0910.0174] [SPIRES].

    Article  ADS  Google Scholar 

  32. I.-W. Kim, Algebraic singularity method for mass measurement with missing energy, Phys. Rev. Lett. 104 (2010) 081601 [arXiv:0910.1149] [SPIRES].

    Article  ADS  Google Scholar 

  33. P. Konar, K. Kong, K.T. Matchev and M. Park, Superpartner mass measurement technique using 1D orthogonal decompositions of the Cambridge transverse mass variable M T2, Phys. Rev. Lett. 105 (2010) 051802 [arXiv:0910.3679] [SPIRES].

    Article  ADS  Google Scholar 

  34. P. Konar, K. Kong, K.T. Matchev and M. Park, Dark matter particle spectroscopy at the LHC: generalizing m T2 to asymmetric event topologies, JHEP 04 (2010) 086 [arXiv:0911.4126] [SPIRES].

    Article  ADS  Google Scholar 

  35. L. Randall and D. Tucker-Smith, Dijet searches for supersymmetry at the LHC, Phys. Rev. Lett. 101 (2008) 221803 [arXiv:0806.1049] [SPIRES].

    Article  ADS  Google Scholar 

  36. A.J. Barr and C.G. Lester, Oxbridge stransverse mass library, http://www.hep.phy.cam.ac.uk/∼lester/mt2/index.html.

  37. H.-C. Cheng and Z. Han, UCD stransverse mass library, http://particle.physics.ucdavis.edu/hefti/projects/doku.php?id=wimpmass.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Lester.

Additional information

ArXiv ePrint: 1103.5682

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lester, C.G. The stransverse mass, M T2, in special cases. J. High Energ. Phys. 2011, 76 (2011). https://doi.org/10.1007/JHEP05(2011)076

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)076

Keywords

Navigation