Skip to main content
Log in

Parton fragmentation within an identified jet at NNLL

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The fragmentation of a light parton i to a jet containing a light energetic hadron h, where the momentum fraction of this hadron as well as the invariant mass of the jet is measured, is described by “fragmenting jet functions”. We calculate the oneloop matching coefficients \( {\mathcal{J}_{ij}} \) that relate the fragmenting jet functions \( \mathcal{G}_i^h \) to the standard, unpolarized fragmentation functions D h j for quark and gluon jets. We perform this calculation using various IR regulators and show explicitly how the IR divergences cancel in the matching. We derive the relationship between the coefficients \( {\mathcal{J}_{ij}} \) and the quark and gluon jet functions. This provides a cross-check of our results. As an application we study the process e + e -Xπ+ on the Υ(4S) resonance where we measure the momentum fraction of the π+ and restrict to the dijet limit by imposing a cut on thrust T. In our analysis we sum the logarithms of τ = 1-T in the cross section to next-to-next-to-leading-logarithmic accuracy (NNLL). We find that including contributions up to NNLL (or NLO) can have a large impact on extracting fragmentation functions from e + e - → dijet + h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [SPIRES].

    Google Scholar 

  2. H. Georgi and H.D. Politzer, Quark Decay Functions and Heavy Hadron Production in QCD, Nucl. Phys. B 136 (1978) 445 [SPIRES].

    Article  ADS  Google Scholar 

  3. R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer and G.G. Ross, Perturbation Theory and the Parton Model in QCD, Nucl. Phys. B 152 (1979) 285 [SPIRES].

    Article  ADS  Google Scholar 

  4. G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond Leading Order: The Nonsinglet Case, Nucl. Phys. B 175 (1980) 27 [SPIRES].

    Article  ADS  Google Scholar 

  5. J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [SPIRES].

    Article  ADS  Google Scholar 

  6. Belle collaboration, R. Seidl et al., Measurement of Azimuthal Asymmetries in Inclusive Production of Hadron Pairs in e + e - Annihilation at \( \sqrt {s} = 10.58 \) GeV, Phys. Rev. D 78 (2008) 032011 [arXiv:0805.2975] [SPIRES].

    ADS  Google Scholar 

  7. E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [SPIRES].

    Article  ADS  Google Scholar 

  8. M. Procura and I.W. Stewart, Quark Fragmentation within an Identified Jet, Phys. Rev. D 81 (2010) 074009 [arXiv:0911.4980] [SPIRES].

    ADS  Google Scholar 

  9. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [SPIRES].

    ADS  Google Scholar 

  10. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [SPIRES].

    ADS  Google Scholar 

  11. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [SPIRES].

    ADS  Google Scholar 

  12. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-Collinear Factorization in Effective Field Theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].

    ADS  Google Scholar 

  13. S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e - event shape distributions, Nucl. Phys. B 407 (1993) 3 [SPIRES].

    Article  ADS  Google Scholar 

  14. G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [SPIRES].

    Article  ADS  Google Scholar 

  15. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [SPIRES].

    ADS  Google Scholar 

  16. M.D. Schwartz, Resummation and NLO Matching of Event Shapes with Effective Field Theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [SPIRES].

    ADS  Google Scholar 

  17. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [SPIRES].

    Article  ADS  Google Scholar 

  18. S.D. Ellis, A. Hornig, C. Lee, C.K. Vermilion and J.R. Walsh, Consistent Factorization of Jet Observables in Exclusive Multijet Cross-Sections, Phys. Lett. B 689 (2010) 82 [arXiv:0912.0262] [SPIRES].

    ADS  Google Scholar 

  19. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [SPIRES].

    Article  ADS  Google Scholar 

  20. A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in quantum field theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [SPIRES].

    ADS  Google Scholar 

  21. J.C. Collins and F. Hautmann, Infrared divergences and non-lightlike eikonal lines in Sudakov processes, Phys. Lett. B 472 (2000) 129 [hep-ph/9908467] [SPIRES].

    ADS  Google Scholar 

  22. C. Lee and G.F. Sterman, Momentum flow correlations from event shapes: Factorized soft gluons and soft-collinear effective theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [SPIRES].

    ADS  Google Scholar 

  23. A. Idilbi and T. Mehen, On the equivalence of soft and zero-bin subtractions, Phys. Rev. D75 (2007) 114017 [hep-ph/0702022] [SPIRES].

    ADS  Google Scholar 

  24. J.-y. Chiu, A. Fuhrer, A.H. Hoang, R. Kelley and A.V. Manohar, Using SCET to calculate electroweak corrections in gauge boson production, PoS EFT09 (2009) 009 [arXiv:0905.1141] [SPIRES].

  25. S.D. Drell, D.J. Levy and T.-M. Yan, A Theory of Deep Inelastic Lepton-Nucleon Scattering and Lepton Pair Annihilation Processes. 1, Phys. Rev. 187 (1969) 2159 [SPIRES].

    Article  ADS  Google Scholar 

  26. S.D. Drell, D.J. Levy and T.-M. Yan, A Theory of Deep Inelastic Lepton-Nucleon Scattering and Lepton Pair Annihilation Processes. 3. Deep Inelastic electron-Positron Annihilation, Phys. Rev. D1 (1970) 1617 [SPIRES].

    ADS  Google Scholar 

  27. V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [SPIRES].

    Google Scholar 

  28. V.N. Gribov and L.N. Lipatov, e + e pair annihilation and deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 675 [SPIRES].

    Google Scholar 

  29. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [SPIRES].

    Article  ADS  Google Scholar 

  30. M. Stratmann and W. Vogelsang, Next-to-leading order evolution of polarized and unpolarized fragmentation functions, Nucl. Phys. B 496 (1997) 41 [hep-ph/9612250] [SPIRES].

    Article  ADS  Google Scholar 

  31. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [SPIRES].

    Article  ADS  Google Scholar 

  32. S. Fleming, A.K. Leibovich and T. Mehen, Resummation of Large Endpoint Corrections to Color-Octet J/ψ Photoproduction, Phys. Rev. D 74 (2006) 114004 [hep-ph/0607121] [SPIRES].

    ADS  Google Scholar 

  33. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Quark Beam Function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [SPIRES].

    Article  ADS  Google Scholar 

  34. M. Hirai, S. Kumano, T.H. Nagai and K. Sudoh, Determination of fragmentation functions and their uncertainties, Phys. Rev. D 75 (2007) 094009 [hep-ph/0702250] [SPIRES].

    ADS  Google Scholar 

  35. Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [SPIRES].

    ADS  Google Scholar 

  36. G. Parisi, Summing Large Perturbative Corrections in QCD, Phys. Lett. B 90 (1980) 295 [SPIRES].

    ADS  Google Scholar 

  37. G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [SPIRES].

    Article  ADS  Google Scholar 

  38. L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [SPIRES].

    ADS  Google Scholar 

  39. T.O. Eynck, E. Laenen and L. Magnea, Exponentiation of the Drell-Yan cross section near partonic threshold in the DIS and MS-bar schemes, JHEP 06 (2003) 057 [hep-ph/0305179] [SPIRES].

    Article  ADS  Google Scholar 

  40. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for α s (m Z), arXiv:1006.3080 [SPIRES].

  41. A.H. Hoang and I.W. Stewart, Designing Gapped Soft Functions for Jet Production, Phys.Lett. B 660 (2008) 483 [arXiv:0709.3519] [SPIRES].

    ADS  Google Scholar 

  42. C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs Production with a Central Jet Veto at NNLL+NNLO, arXiv:1012.4480 [SPIRES].

  43. X. Liu, SCET approach to top quark decay, arXiv:1011.3872 [SPIRES].

  44. A.H. Mueller, Cut Vertices and their Renormalization: A Generalization of the Wilson Expansion, Phys. Rev. D 18 (1978) 3705 [SPIRES].

    ADS  Google Scholar 

  45. L. Baulieu, E.G. Floratos and C. Kounnas, Parton Model Interpretation of the Cut Vertex Formalism, Nucl. Phys. B 166 (1980) 321 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. A.V. Manohar, Deep inelastic scattering as x → 1 using soft-collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [SPIRES].

    ADS  Google Scholar 

  47. C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [SPIRES].

    ADS  Google Scholar 

  48. C.W. Bauer and A.V. Manohar, Shape function effects in BX s γ and BX u ℓν decays, Phys. Rev. D 70 (2004) 034024 [hep-ph/0312109] [SPIRES].

    ADS  Google Scholar 

  49. S. Fleming, A.K. Leibovich and T. Mehen, Resumming the color octet contribution to e + e -J/ψ + X, Phys. Rev. D 68 (2003) 094011 [hep-ph/0306139] [SPIRES].

    ADS  Google Scholar 

  50. T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [SPIRES].

    Article  ADS  Google Scholar 

  51. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711. 2079] [SPIRES].

    ADS  Google Scholar 

  52. C. Balzereit, T. Mannel and W. Kilian, Evolution of the light-cone distribution function for a heavy quark, Phys. Rev. D 58 (1998) 114029 [hep-ph/9805297] [SPIRES].

    ADS  Google Scholar 

  53. M. Neubert, Renormalization-group improved calculation of the BX s γ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [SPIRES].

    Article  ADS  Google Scholar 

  54. O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [SPIRES].

    ADS  Google Scholar 

  55. S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [SPIRES].

    ADS  Google Scholar 

  56. S. Moch, J.A.M. Vermaseren and A. Vogt, The three-loop splitting functions in QCD: The non-singlet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. A. Idilbi, X.-d. Ji and F. Yuan, Resummation of Threshold Logarithms in Effective Field Theory For DIS, Drell-Yan and Higgs Production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [SPIRES].

    Article  ADS  Google Scholar 

  58. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].

    Article  ADS  Google Scholar 

  59. S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [SPIRES].

    Article  ADS  Google Scholar 

  60. A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: The singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Procura.

Additional information

ArXiv ePrint:1101.4953

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Procura, M. & Waalewijn, W.J. Parton fragmentation within an identified jet at NNLL. J. High Energ. Phys. 2011, 35 (2011). https://doi.org/10.1007/JHEP05(2011)035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)035

Keywords

Navigation