Skip to main content
Log in

Radiative contribution to neutrino masses and mixing in μνSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In an extension of the minimal supersymmetric standard model (popularly known as the μνSSM), three right handed neutrino superfields are introduced to solve the μ-problem and to accommodate the non-vanishing neutrino masses and mixing. Neutrino masses at the tree level are generated through R−parity violation and seesaw mechanism. We have analyzed the full effect of one-loop contributions to the neutrino mass matrix. We show that the current three flavour global neutrino data can be accommodated in the μνSSM, for both the tree level and one-loop corrected analyses. We find that it is relatively easier to accommodate the normal hierarchical mass pattern compared to the inverted hierarchical or quasi-degenerate case, when one-loop corrections are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. B. Kayser, Neutrino mass, mixing and flavor change, arXiv:0804.1497 [SPIRES].

  3. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  4. P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [SPIRES].

    Article  ADS  Google Scholar 

  5. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [SPIRES].

    ADS  Google Scholar 

  6. G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [SPIRES].

    ADS  Google Scholar 

  7. C.S. Aulakh and R.N. Mohapatra, Neutrino as the supersymmetric partner of the majoron, Phys. Lett. B 119 (1982) 136 [SPIRES].

    ADS  Google Scholar 

  8. L.J. Hall and M. Suzuki, Explicit R-parity breaking in supersymmetric models, Nucl. Phys. B 231 (1984) 419 [SPIRES].

    Article  ADS  Google Scholar 

  9. I.-H. Lee, Lepton number violation in softly broken supersymmetry, Phys. Lett. B 138 (1984) 121 [SPIRES].

    ADS  Google Scholar 

  10. I.-H. Lee, Lepton number violation in softly broken supersymmetry. 2, Nucl. Phys. B 246 (1984) 120 [SPIRES].

    Article  ADS  Google Scholar 

  11. G.G. Ross and J.W.F. Valle, Supersymmetric models without R-parity, Phys. Lett. B 151 (1985) 375 [SPIRES].

    ADS  Google Scholar 

  12. J.R. Ellis, G. Gelmini, C. Jarlskog, G.G. Ross and J.W.F. Valle, Phenomenology of supersymmetry with broken R-parity, Phys. Lett. B 150 (1985) 142 [SPIRES].

    ADS  Google Scholar 

  13. A. Masiero and J.W.F. Valle, A model for spontaneous R-parity breaking, Phys. Lett. B 251 (1990) 273 [SPIRES].

    ADS  Google Scholar 

  14. B.C. Allanach, A. Dedes and H.K. Dreiner, The R-parity violating minimal supergravity model, Phys. Rev. D 69 (2004) 115002 [hep-ph/0309196] [SPIRES].

    ADS  Google Scholar 

  15. R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [SPIRES].

    Article  ADS  Google Scholar 

  16. M. Chemtob, Phenomenological constraints on broken R-parity symmetry in supersymmetry models, Prog. Part. Nucl. Phys. 54 (2005) 71 [hep-ph/0406029] [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Dawson, R-parity breaking in supersymmetric theories, Nucl. Phys. B 261 (1985) 297 [SPIRES].

    Article  ADS  Google Scholar 

  18. S. Dimopoulos and L.J. Hall, Lepton and baryon number violating collider signatures from supersymmetry, Phys. Lett. B 207 (1988) 210 [SPIRES].

    ADS  Google Scholar 

  19. R.M. Godbole, P. Roy and X. Tata, Tau signals of R-parity breaking at LEP-200, Nucl. Phys. B 401 (1993) 67 [hep-ph/9209251] [SPIRES].

    Article  ADS  Google Scholar 

  20. M. Drees, S. Pakvasa, X. Tata and T. ter Veldhuis, A supersymmetric resolution of solar and atmospheric neutrino puzzles, Phys. Rev. D 57 (1998) 5335 [hep-ph/9712392] [SPIRES].

    ADS  Google Scholar 

  21. R. Adhikari and G. Omanovic, LSND, solar and atmospheric neutrino oscillation experiments and R-parity violating supersymmetry, Phys. Rev. D 59 (1999) 073003 [SPIRES].

    ADS  Google Scholar 

  22. S. Rakshit, G. Bhattacharyya and A. Raychaudhuri, R-parity-violating trilinear couplings and recent neutrino data, Phys. Rev. D 59 (1999) 091701 [hep-ph/9811500] [SPIRES].

    ADS  Google Scholar 

  23. F. Borzumati and J.S. Lee, Novel constraints on Δ(L) = 1 interactions from neutrino masses, Phys. Rev. D 66 (2002) 115012 [hep-ph/0207184] [SPIRES].

    ADS  Google Scholar 

  24. P. Dey, A. Kundu, B. Mukhopadhyaya and S. Nandi, Two-loop neutrino masses with large R-parity violating interactions in supersymmetry, JHEP 12 (2008) 100 [arXiv:0808.1523] [SPIRES].

    Article  ADS  Google Scholar 

  25. A.S. Joshipura and M. Nowakowski, ’Just so’ oscillations in supersymmetric standard model, Phys. Rev. D 51 (1995) 2421 [hep-ph/9408224] [SPIRES].

    ADS  Google Scholar 

  26. A.S. Joshipura and M. Nowakowski, Leptonic CP-violation in supersymmetric standard model, Phys. Rev. D 51 (1995) 5271 [hep-ph/9403349] [SPIRES].

    ADS  Google Scholar 

  27. M. Nowakowski and A. Pilaftsis, W and Z boson interactions in supersymmetric models with explicit R-parity violation, Nucl. Phys. B 461 (1996) 19 [hep-ph/9508271] [SPIRES].

    Article  ADS  Google Scholar 

  28. F. Borzumati, Y. Grossman, E. Nardi and Y. Nir, Neutrino masses and mixing in supersymmetric models without R parity, Phys. Lett. B 384 (1996) 123 [hep-ph/9606251] [SPIRES].

    ADS  Google Scholar 

  29. T. Banks, Y. Grossman, E. Nardi and Y. Nir, Supersymmetry without R-parity and without lepton number, Phys. Rev. D 52 (1995) 5319 [hep-ph/9505248] [SPIRES].

    ADS  Google Scholar 

  30. R. Hempfling, Neutrino masses and mixing angles in SUSY-GUT theories with explicit R-parity breaking, Nucl. Phys. B 478 (1996) 3 [hep-ph/9511288] [SPIRES].

    Article  ADS  Google Scholar 

  31. B. de Carlos and P.L. White, R-parity violation effects through soft supersymmetry breaking terms and the renormalisation group, Phys. Rev. D 54 (1996) 3427 [hep-ph/9602381] [SPIRES].

    ADS  Google Scholar 

  32. E. Nardi, Renormalization group induced neutrino masses in supersymmetry without R-parity, Phys. Rev. D 55 (1997) 5772 [hep-ph/9610540] [SPIRES].

    ADS  Google Scholar 

  33. H.-P. Nilles and N. Polonsky, Supersymmetric neutrino masses, R symmetries and the generalized μ problem, Nucl. Phys. B 484 (1997) 33 [hep-ph/9606388] [SPIRES].

    Article  ADS  Google Scholar 

  34. F. de Campos, M.A. Garcia-Jareno, A.S. Joshipura, J. Rosiek and J.W.F. Valle, Novel scalar boson decays in SUSY with broken R-parity, Nucl. Phys. B 451 (1995) 3 [hep-ph/9502237] [SPIRES].

    Article  ADS  Google Scholar 

  35. S. Roy and B. Mukhopadhyaya, Some implications of a supersymmetric model with R-parity breaking bilinear interactions, Phys. Rev. D 55 (1997) 7020 [hep-ph/9612447] [SPIRES].

    ADS  Google Scholar 

  36. M.A. Diaz, J.C. Romao and J.W.F. Valle, Minimal supergravity with R-parity breaking, Nucl. Phys. B 524 (1998) 23 [hep-ph/9706315] [SPIRES].

    ADS  Google Scholar 

  37. A. Datta, B. Mukhopadhyaya and S. Roy, Constraining an R-parity violating supersymmetric theory from the SuperKamiokande data on atmospheric neutrinos, Phys. Rev. D 61 (2000) 055006 [hep-ph/9905549] [SPIRES].

    ADS  Google Scholar 

  38. M. Bisset, O.C.W. Kong, C. Macesanu and L.H. Orr, A simple phenomenological parametrization of supersymmetry without R-parity, Phys. Lett. B 430 (1998) 274 [hep-ph/9804282] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. K. Choi, K. Hwang and E.J. Chun, Atmospheric and solar neutrino masses from horizontal U(1) symmetry, Phys. Rev. D 60 (1999) 031301 [hep-ph/9811363] [SPIRES].

    ADS  Google Scholar 

  40. E.J. Chun, S.K. Kang, C.W. Kim and U.W. Lee, Supersymmetric neutrino masses and mixing with R-parity violation, Nucl. Phys. B 544 (1999) 89 [hep-ph/9807327] [SPIRES].

    Article  ADS  Google Scholar 

  41. A.S. Joshipura and S.K. Vempati, Neutrino vacuum expectation values and neutrino anomalies through trilinear R-parity violation, Phys. Rev. D 60 (1999) 111303 [hep-ph/9903435] [SPIRES].

    ADS  Google Scholar 

  42. D.E. Kaplan and A.E. Nelson, Solar and atmospheric neutrino oscillations from bilinear R-parity violation, JHEP 01 (2000) 033 [hep-ph/9901254] [SPIRES].

    Article  ADS  Google Scholar 

  43. F. Takayama and M. Yamaguchi, Pattern of neutrino oscillations in supersymmetry with bilinear R-parity violation, Phys. Lett. B 476 (2000) 116 [hep-ph/9910320] [SPIRES].

    ADS  Google Scholar 

  44. Y. Grossman and H.E. Haber, (S)neutrino properties in R-parity violating supersymmetry. I: CP-conserving phenomena, Phys. Rev. D 59 (1999) 093008 [hep-ph/9810536] [SPIRES].

    ADS  Google Scholar 

  45. Y. Grossman and H.E. Haber, Neutrino masses and sneutrino mixing in R-parity violating supersymmetry, hep-ph/9906310 [SPIRES].

  46. E.J. Chun and S.K. Kang, One-loop corrected neutrino masses and mixing in supersymmetric standard model without R-parity, Phys. Rev. D 61 (2000) 075012 [hep-ph/9909429] [SPIRES].

    ADS  Google Scholar 

  47. M. Hirsch, M.A. Diaz, W. Porod, J.C. Romao and J.W.F. Valle, Neutrino masses and mixings from supersymmetry with bilinear R-parity violation: A theory for solar and atmospheric neutrino oscillations, Phys. Rev. D 62 (2000) 113008 [Erratum ibid. D 65 (2002) 119901] [hep-ph/0004115] [SPIRES].

    ADS  Google Scholar 

  48. M.A. Diaz, M. Hirsch, W. Porod, J.C. Romao and J.W.F. Valle, Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: analytical versus numerical results, Phys. Rev. D 68 (2003) 013009 [Erratum ibid. D 71 (2005) 059904] [hep-ph/0302021] [SPIRES].

    ADS  Google Scholar 

  49. S. Davidson and M. Losada, Neutrino masses in the R(p) violating MSSM, JHEP 05 (2000) 021 [hep-ph/0005080] [SPIRES].

    Article  ADS  Google Scholar 

  50. S. Davidson and M. Losada, Basis independent neutrino masses in the R(p) violating MSSM, Phys. Rev. D 65 (2002) 075025 [hep-ph/0010325] [SPIRES].

    ADS  Google Scholar 

  51. A. Abada, S. Davidson and M. Losada, Neutrino masses and mixings in the MSSM with soft bilinear R(p) violation, Phys. Rev. D 65 (2002) 075010 [hep-ph/0111332] [SPIRES].

    ADS  Google Scholar 

  52. A. Abada, G. Bhattacharyya and M. Losada, A general analysis with trilinear and bilinear R-parity violating couplings in the light of recent SNO data, Phys. Rev. D 66 (2002) 071701 [hep-ph/0208009] [SPIRES].

    ADS  Google Scholar 

  53. S. Davidson, M. Losada and N. Rius, Neutral Higgs sector of the MSSM without R(p), Nucl. Phys. B 587 (2000) 118 [hep-ph/9911317] [SPIRES].

    Article  ADS  Google Scholar 

  54. E.J. Chun, D.-W. Jung and J.D. Park, Bi-large neutrino mixing from bilinear R-parity violation with non-universality, Phys. Lett. B 557 (2003) 233 [hep-ph/0211310] [SPIRES].

    ADS  Google Scholar 

  55. Y. Grossman and S. Rakshit, Neutrino masses in R-parity violating supersymmetric models, Phys. Rev. D 69 (2004) 093002 [hep-ph/0311310] [SPIRES].

    ADS  Google Scholar 

  56. A. Dedes, S. Rimmer and J. Rosiek, Neutrino masses in the lepton number violating MSSM, JHEP 08 (2006) 005 [hep-ph/0603225] [SPIRES].

    Article  ADS  Google Scholar 

  57. B. Mukhopadhyaya, S. Roy and F. Vissani, Correlation between neutrino oscillations and collider signals of supersymmetry in an R-parity violating model, Phys. Lett. B 443 (1998) 191 [hep-ph/9808265] [SPIRES].

    ADS  Google Scholar 

  58. S.Y. Choi, E.J. Chun, S.K. Kang and J.S. Lee, Neutrino oscillations and R-parity violating collider signals, Phys. Rev. D 60 (1999) 075002 [hep-ph/9903465] [SPIRES].

    ADS  Google Scholar 

  59. J.C. Romao, M.A. Diaz, M. Hirsch, W. Porod and J.W.F. Valle, A supersymmetric solution to the solar and atmospheric neutrino problems, Phys. Rev. D 61 (2000) 071703 [hep-ph/9907499] [SPIRES].

    ADS  Google Scholar 

  60. A. Datta, B. Mukhopadhyaya and F. Vissani, Tevatron signatures of an R-parity violating supersymmetric theory, Phys. Lett. B 492 (2000) 324 [hep-ph/9910296] [SPIRES].

    ADS  Google Scholar 

  61. W. Porod, M. Hirsch, J. Romao and J.W.F. Valle, Testing neutrino mixing at future collider experiments, Phys. Rev. D 63 (2001) 115004 [hep-ph/0011248] [SPIRES].

    ADS  Google Scholar 

  62. E.J. Chun, D.-W. Jung, S.K. Kang and J.D. Park, Collider signatures of neutrino masses and mixing from R-parity violation, Phys. Rev. D 66 (2002) 073003 [hep-ph/0206030] [SPIRES].

    ADS  Google Scholar 

  63. D.-W. Jung, S.K. Kang, J.D. Park and E.J. Chun, Neutrino oscillations and collider test of the R-parity violating minimal supergravity model, JHEP 08 (2004) 017 [hep-ph/0407106] [SPIRES].

    Article  ADS  Google Scholar 

  64. J.C. Romao, C.A. Santos and J.W.F. Valle, How to spontaneously break R-parity, Phys. Lett. B 288 (1992) 311 [SPIRES].

    ADS  Google Scholar 

  65. G.F. Giudice, A. Masiero, M. Pietroni and A. Riotto, The supersymmetric singlet majoron, Nucl. Phys. B 396 (1993) 243 [hep-ph/9209296] [SPIRES].

    Article  ADS  Google Scholar 

  66. I. Umemura and K. Yamamoto, Neutrinos in the supersymmetric singlet majoron model, Nucl. Phys. B 423 (1994) 405 [SPIRES].

    Article  ADS  Google Scholar 

  67. S. Choubey and M. Mitra, Spontaneous R-parity violating type-III seesaw, JHEP 05 (2010) 021 [arXiv:0911.2030] [SPIRES].

    Article  Google Scholar 

  68. M. Mitra, Spontaneous R-parity violation, A 4 flavor symmetry and tribimaximal mixing, arXiv:0912.5291 [SPIRES].

  69. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  70. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, published in Supergravity, P. van Nieuwenhuizen & D.Z. Freedman eds., North Holland, The Netherlands (1979), published in Stony Brook Wkshp.1979:0315 (QC178:S8:1979).

  71. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto, eds., KEK, Tsukuba Japan (1979), pg. 95.

  72. S.L. Glashow, The future of elementary particle physics, in proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons, M. Lévy, J.-L. Basdevant, D. Speiser, J. Weyers, R. Gastmans, and M. Jacob, eds., Plenum Press, New York U.S.A. (1980), pg. 687.

    Google Scholar 

  73. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  74. M.C. Gonzalez-Garcia, J.C. Romao and J.W.F. Valle, Spontaneous R-parity breaking at hadron supercolliders, Nucl. Phys. B 391 (1993) 100 [SPIRES].

    Article  ADS  Google Scholar 

  75. R. Adhikari and B. Mukhopadhyaya, Distinctive signals of spontaneous R-parity breaking at LEP-2, Phys. Lett. B 378 (1996) 342 [Erratum ibid. B 384 (1996) 492] [hep-ph/9601382] [SPIRES].

    ADS  Google Scholar 

  76. M. Hirsch, A. Vicente and W. Porod, Spontaneous R-parity violation: lightest neutralino decays and neutrino mixing angles at future colliders, Phys. Rev. D 77 (2008) 075005 [arXiv:0802.2896] [SPIRES].

    ADS  Google Scholar 

  77. D.E. Lopez-Fogliani and C. Muñoz, Proposal for a new minimal supersymmetric standard model, Phys. Rev. Lett. 97 (2006) 041801 [hep-ph/0508297] [SPIRES].

    Article  ADS  Google Scholar 

  78. N. Escudero, D.E. Lopez-Fogliani, C. Muñoz and R.R. de Austri, Analysis of the parameter space and spectrum of the μνSSM, JHEP 12 (2008) 099 [arXiv:0810.1507] [SPIRES].

    Article  ADS  Google Scholar 

  79. P. Ghosh and S. Roy, Neutrino masses and mixing, lightest neutralino decays and a solution to the μ problem in supersymmetry, JHEP 04 (2009) 069 [arXiv:0812.0084] [SPIRES].

    Article  ADS  Google Scholar 

  80. R. Kitano and K.-y. Oda, Neutrino masses in the supersymmetric standard model with right-handed neutrinos and spontaneous R-parity violation, Phys. Rev. D 61 (2000) 113001 [hep-ph/9911327] [SPIRES].

    ADS  Google Scholar 

  81. M. Frank, K. Huitu and T. Ruppell, Higgs and neutrino sector, EDM and ϵ K in a spontaneously CP and R-parity breaking supersymmetric model, Eur. Phys. J. C 52 (2007) 413 [arXiv:0705.4160] [SPIRES].

    Article  ADS  Google Scholar 

  82. P.N. Pandita and P.F. Paulraj, Infra-red stable fixed points of Yukawa couplings in nonminimal supersymmetric standard model with R-parity violation, Phys. Lett. B 462 (1999) 294 [hep-ph/9907561] [SPIRES].

    ADS  Google Scholar 

  83. P.N. Pandita, Nonminimal supersymmetric standard model with baryon and lepton number violation, Phys. Rev. D 64 (2001) 056002 [hep-ph/0103005] [SPIRES].

    ADS  Google Scholar 

  84. M. Chemtob and P.N. Pandita, Nonminimal supersymmetric standard model with lepton number violation, Phys. Rev. D 73 (2006) 055012 [hep-ph/0601159] [SPIRES].

    ADS  Google Scholar 

  85. A. Abada and G. Moreau, An origin for small neutrino masses in the NMSSM, JHEP 08 (2006) 044 [hep-ph/0604216] [SPIRES].

    Article  ADS  Google Scholar 

  86. A. Abada, G. Bhattacharyya and G. Moreau, A new mechanism of neutrino mass generation in the NMSSM with broken lepton number, Phys. Lett. B 642 (2006) 503 [hep-ph/0606179] [SPIRES].

    ADS  Google Scholar 

  87. R.S. Hundi, S. Pakvasa and X. Tata, Addressing μb μ and proton lifetime problems and active neutrino masses in a U(1)′-extended supergravity model, Phys. Rev. D 79 (2009) 095011 [arXiv:0903.1631] [SPIRES].

    ADS  Google Scholar 

  88. A. Bartl, M. Hirsch, A. Vicente, S. Liebler and W. Porod, LHC phenomenology of the μνSSM, JHEP 05 (2009) 120 [arXiv:0903.3596] [SPIRES].

    Article  ADS  Google Scholar 

  89. J. Fidalgo, D.E. Lopez-Fogliani, C. Muñoz and R. Ruiz de Austri, Neutrino Physics and Spontaneous CP-violation in the μνSSM, JHEP 08 (2009) 105 [arXiv:0904.3112] [SPIRES].

    Article  ADS  Google Scholar 

  90. K.-Y. Choi, D.E. Lopez-Fogliani, C. Muñoz and R.R. de Austri, Gamma-ray detection from gravitino dark matter decay in the μνSSM, JCAP 03 (2010) 028 [arXiv:0906.3681] [SPIRES].

    ADS  Google Scholar 

  91. C. Muñoz, Phenomenology of a new supersymmetric standard model: the μνSSM, AIP Conf. Proc. 1200 (2010) 413 [arXiv:0909.5140] [SPIRES].

    Article  ADS  Google Scholar 

  92. J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [SPIRES].

    ADS  Google Scholar 

  93. B. Mukhopadhyaya and R. Srikanth, Bilarge neutrino mixing in R-parity violating supersymmetry: the role of right-chiral neutrino superfields, Phys. Rev. D 74 (2006) 075001 [hep-ph/0605109] [SPIRES].

    ADS  Google Scholar 

  94. S. Chang and A. de Gouvêa, Neutrino alternatives for missing energy events at colliders, Phys. Rev. D 80 (2009) 015008 [arXiv:0901.4796] [SPIRES].

    ADS  Google Scholar 

  95. Y. Farzan and J.W.F. Valle, R-parity violation assisted thermal leptogenesis in the seesaw mechanism, Phys. Rev. Lett. 96 (2006) 011601 [hep-ph/0509280] [SPIRES].

    Article  ADS  Google Scholar 

  96. J.R. Ellis et al., Problems for (2,0) compactifications, Phys. Lett. B 176 (1986) 403 [SPIRES].

    ADS  Google Scholar 

  97. B. Rai and G. Senjanović, Gravity and domain wall problem, Phys. Rev. D 49 (1994) 2729 [hep-ph/9301240] [SPIRES].

    ADS  Google Scholar 

  98. S.A. Abel, S. Sarkar and P.L. White, On the cosmological domain wall problem for the minimally extended supersymmetric standard model, Nucl. Phys. B 454 (1995) 663 [hep-ph/9506359] [SPIRES].

    Article  ADS  Google Scholar 

  99. S.A. Abel, Destabilising divergences in the NMSSM, Nucl. Phys. B 480 (1996) 55 [hep-ph/9609323] [SPIRES].

    Article  ADS  Google Scholar 

  100. C. Panagiotakopoulos and K. Tamvakis, Stabilized NMSSM without domain walls, Phys. Lett. B 446 (1999) 224 [hep-ph/9809475] [SPIRES].

    ADS  Google Scholar 

  101. J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [SPIRES].

    ADS  Google Scholar 

  102. M. Hirsch and J.W.F. Valle, Neutrinoless double beta decay in supersymmetry with bilinear R-parity breaking, Nucl. Phys. B 557 (1999) 60 [hep-ph/9812463] [SPIRES].

    Article  ADS  Google Scholar 

  103. M. Hirsch, J.C. Romao and J.W.F. Valle, Bilinear R-parity violating SUSY: Neutrinoless double beta decay in the light of solar and atmospheric neutrino data, Phys. Lett. B 486 (2000) 255 [hep-ph/0002264] [SPIRES].

    ADS  Google Scholar 

  104. W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B 84 (1979) 193 [SPIRES].

    ADS  Google Scholar 

  105. D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Regularization by dimensional reduction of supersymmetric and nonsupersymmetric gauge theories, Nucl. Phys. B 167 (1980) 479 [SPIRES].

    Article  ADS  Google Scholar 

  106. D. Pierce and A. Papadopoulos, Radiative corrections to neutralino and chargino masses in the minimal supersymmetric model, Phys. Rev. D 50 (1994) 565 [hep-ph/9312248] [SPIRES].

    ADS  Google Scholar 

  107. D. Pierce and A. Papadopoulos, The complete radiative corrections to the gaugino and Higgsino masses in the minimal supersymmetric model, Nucl. Phys. B 430 (1994) 278 [hep-ph/9403240] [SPIRES].

    Article  ADS  Google Scholar 

  108. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [SPIRES].

    Article  ADS  Google Scholar 

  109. G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

    Article  ADS  Google Scholar 

  110. G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  111. T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].

    Article  ADS  Google Scholar 

  112. M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, B-L violating masses in softly broken supersymmetry, Phys. Lett. B 398 (1997) 311 [hep-ph/9701253] [SPIRES].

    ADS  Google Scholar 

  113. Y. Grossman and H.E. Haber, Sneutrino mixing phenomena, Phys. Rev. Lett. 78 (1997) 3438 [hep-ph/9702421] [SPIRES].

    Article  ADS  Google Scholar 

  114. A. Dedes, H.E. Haber and J. Rosiek, Seesaw mechanism in the sneutrino sector and its consequences, JHEP 11 (2007) 059 [arXiv:0707.3718] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  115. Particle Data Group collaboration, S. Eidelman et al., Review of particle physics, Phys. Lett. B 592 (2004) 1 [SPIRES].

    ADS  Google Scholar 

  116. Super-Kamiokande collaboration, S. Fukuda et al., Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations, Phys. Rev. Lett. 85 (2000) 3999 [hep-ex/0009001] [SPIRES].

    Article  ADS  Google Scholar 

  117. MACRO collaboration, M. Ambrosio et al., Matter effects in upward-going muons and sterile neutrino oscillations, Phys. Lett. B 517 (2001) 59 [hep-ex/0106049] [SPIRES].

    ADS  Google Scholar 

  118. SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [SPIRES].

    Article  ADS  Google Scholar 

  119. SNO collaboration, Q.R. Ahmad et al., Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett. 89 (2002) 011302 [nucl-ex/0204009] [SPIRES].

    Article  ADS  Google Scholar 

  120. SNO collaboration, S.N. Ahmed et al., Measurement of the total active B-8 solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity, Phys. Rev. Lett. 92 (2004) 181301 [nucl-ex/0309004] [SPIRES].

    Article  ADS  Google Scholar 

  121. CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [SPIRES].

    ADS  Google Scholar 

  122. KamLAND collaboration, K. Eguchi et al., First results from KamLAND: Evidence for reactor anti- neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [SPIRES].

    Article  ADS  Google Scholar 

  123. A. Bandyopadhyay, S. Choubey, S. Goswami, S.T. Petcov and D.P. Roy, Constraints on neutrino oscillation parameters from the SNO salt phase data, Phys. Lett. B 583 (2004) 134 [hep-ph/0309174] [SPIRES].

    ADS  Google Scholar 

  124. G.L. Fogli et al., Addendum to: solar neutrino oscillation parameters after first KamLAND results, Phys. Rev. D 69 (2004) 017301 [hep-ph/0308055] [SPIRES].

    ADS  Google Scholar 

  125. P.C. de Holanda and A.Y. Smirnov, Solar neutrinos: the SNO salt phase results and physics of conversion, Astropart. Phys. 21 (2004) 287 [hep-ph/0309299] [SPIRES].

    Article  ADS  Google Scholar 

  126. M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [SPIRES].

    Article  ADS  Google Scholar 

  127. A. Strumia and F. Vissani, Implications of neutrino data circa 2005, Nucl. Phys. B 726 (2005) 294 [hep-ph/0503246] [SPIRES].

    Article  ADS  Google Scholar 

  128. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  129. Stephen Wolfram, The Mathematica Book, 5th edition, Wolfram media (2003).

  130. J. Bonn et al., The Mainz neutrino mass experiment, Nucl. Phys. Proc. Suppl. 91 (2001) 273 [SPIRES].

    Article  ADS  Google Scholar 

  131. V.M. Lobashev et al., Direct search for neutrino mass and anomaly in the tritium beta-spectrum: status of ’Troitsk neutrino mass’ experiment, Nucl. Phys. Proc. Suppl. 91 (2001) 280 [SPIRES].

    Article  ADS  Google Scholar 

  132. KATRIN collaboration, A. Osipowicz et al., KATRIN: A next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass, hep-ex/0109033 [SPIRES].

  133. H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz and O. Chkvorets, Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso 1990-2003, Phys. Lett. B 586 (2004) 198 [hep-ph/0404088] [SPIRES].

    ADS  Google Scholar 

  134. H.V. Klapdor-Kleingrothaus and I.V. Krivosheina, The evidence for the observation of 0nu beta beta decay: the identification of 0nu beta beta events from the full spectra, Mod. Phys. Lett. A 21 (2006) 1547 [SPIRES].

    ADS  Google Scholar 

  135. CUORICINO collaboration, C. Arnaboldi et al., Results from a search for the 0νββdecay of 130 Te, Phys. Rev. C 78 (2008) 035502 [arXiv:0802.3439] [SPIRES].

    ADS  Google Scholar 

  136. WMAP collaboration, E. Komatsu et al., Five-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  137. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].

    Google Scholar 

  138. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].

    Article  ADS  Google Scholar 

  139. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [SPIRES].

    Article  ADS  Google Scholar 

  140. J. Rosiek, Complete set of Feynman rules for the minimal supersymmetric extension of the standard model, Phys. Rev. D 41 (1990) 3464 [SPIRES].

    ADS  Google Scholar 

  141. J. Rosiek, Complete set of Feynman rules for the MSSM – ERRATUM, hep-ph/9511250 [SPIRES].

  142. J.F. Gunion and H.E. Haber, Higgs Bosons in Supersymmetric Models. 1, Nucl. Phys. B 272 (1986) 1 [Erratum ibid. B 402 (1993) 567] [SPIRES].

    Article  ADS  Google Scholar 

  143. J.F. Gunion and H.E. Haber, Higgs Bosons in supersymmetric models. 2. Implications for phenomenology, Nucl. Phys. B 278 (1986) 449 [SPIRES].

    Article  ADS  Google Scholar 

  144. F. Franke and H. Fraas, Neutralinos and Higgs bosons in the next-to-minimal supersymmetric standard model, Int. J. Mod. Phys. A 12 (1997) 479 [hep-ph/9512366] [SPIRES].

    ADS  Google Scholar 

  145. F. Franke and H. Fraas, Production and decay of neutralinos in the next-to-minimal supersymmetric standard model, Z. Phys. C 72 (1996) 309 [hep-ph/9511275] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Ghosh.

Additional information

ArXiv ePrint: 1002.2705

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, P., Dey, P., Mukhopadhyaya, B. et al. Radiative contribution to neutrino masses and mixing in μνSSM. J. High Energ. Phys. 2010, 87 (2010). https://doi.org/10.1007/JHEP05(2010)087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)087

Keywords

Navigation