Skip to main content
Log in

Direct determination of the solar neutrino fluxes from solar neutrino data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We determine the solar neutrino fluxes from a global analysis of the solar and terrestrial neutrino data in the framework of three-neutrino mixing. Using a Bayesian approach we reconstruct the posterior probability distribution function for the eight normalization parameters of the solar neutrino fluxes plus the relevant masses and mixing, with and without imposing the luminosity constraint. This is done by means of a Markov Chain Monte Carlo employing the Metropolis-Hastings algorithm. We also describe how these results can be applied to test the predictions of the Standard Solar Models. Our results show that, at present, both models with low and high metallicity can describe the data with good statistical agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.A. Bethe, Energy production in stars, Phys. Rev. 55 (1939) 434 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  2. J.N. Bahcall, Neutrino astrophysics, Cambridge University Press, Cambridge U.K. (1989).

    Google Scholar 

  3. J.N. Bahcall and R.K. Ulrich, Solar Models, Neutrino Experiments and Helioseismology, Rev. Mod. Phys. 60 (1988) 297 [SPIRES].

    Article  ADS  Google Scholar 

  4. S. Turck-Chieze, S. Cahen, M. Casse and C. Doom, Revisiting the standard solar model, Astrophys. J. 335 (1988) 415 [SPIRES].

    Article  ADS  Google Scholar 

  5. J.N. Bahcall and M.H. Pinsonneault, Standard solar models, with and without helium diffusion and the solar neutrino problem, Rev. Mod. Phys. 64 (1992) 885 [SPIRES].

    Article  ADS  Google Scholar 

  6. J.N. Bahcall and M.H. Pinsonneault, Solar models with helium and heavy element diffusion, Rev. Mod. Phys. 67 (1995) 781 [hep-ph/9505425] [SPIRES].

    Article  ADS  Google Scholar 

  7. J.N. Bahcall, M.H. Pinsonneault and S. Basu, Solar models: Current epoch and time dependences, neutrinos and helioseismological properties, Astrophys. J. 555 (2001) 990 [astro-ph/0010346] [SPIRES].

    Article  ADS  Google Scholar 

  8. J.N. Bahcall, A.M. Serenelli and S. Basu, New solar opacities, abundances, helioseismology and neutrino fluxes, Astrophys. J. 621 (2005) L85 [astro-ph/0412440] [SPIRES].

    Article  ADS  Google Scholar 

  9. C. Pena-Garay and A. Serenelli, Solar neutrinos and the solar composition problem, arXiv:0811.2424 [SPIRES].

  10. J.N. Bahcall, Solar neutrinos. I: Theoretical, Phys. Rev. Lett. 12 (1964) 300 [SPIRES].

    Article  ADS  Google Scholar 

  11. J.N. Bahcall, N.A. Bahcall and G. Shaviv, Present status of the theoretical predictions for the Cl- 36 solar neutrino experiment, Phys. Rev. Lett. 20 (1968) 1209 [SPIRES].

    Article  ADS  Google Scholar 

  12. J.N. Bahcall and R. Davis, Solar neutrinos: A scientific puzzle, Science 191 (1976) 264 [SPIRES].

    Article  ADS  Google Scholar 

  13. B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Sov. Phys. JETP 26 (1968) 984 [SPIRES].

    ADS  Google Scholar 

  14. V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [SPIRES].

    ADS  Google Scholar 

  15. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [SPIRES].

    ADS  Google Scholar 

  16. S.P. Mikheev and A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Sov. J. Nucl. Phys. 42 (1985) 913 [SPIRES].

    Google Scholar 

  17. M.V. Garzelli and C. Giunti, Model independent information on solar neutrino oscillations, Phys. Rev. D 65 (2002) 093005 [hep-ph/0111254] [SPIRES].

    ADS  Google Scholar 

  18. J.N. Bahcall, M.C. Gonzalez-Garcia and C. Pena-Garay, If sterile neutrinos exist, how can one determine the total B-8 and Be-7 solar neutrino fluxes?, Phys. Rev. C 66 (2002) 035802 [hep-ph/0204194] [SPIRES].

    ADS  Google Scholar 

  19. J.N. Bahcall, M.C. Gonzalez-Garcia and C. Pena-Garay, Does the sun shine by p p or CNO fusion reactions?, Phys. Rev. Lett. 90 (2003) 131301 [astro-ph/0212331] [SPIRES].

    Article  ADS  Google Scholar 

  20. J.N. Bahcall, M.C. Gonzalez-Garcia and C. Pena-Garay, Solar neutrinos before and after Neutrino 2004, JHEP 08 (2004) 016 [hep-ph/0406294] [SPIRES].

    Article  ADS  Google Scholar 

  21. J.N. Bahcall and C. Pena-Garay, Global analyses as a road map to solar neutrino fluxes and oscillation parameters, JHEP 11 (2003) 004 [hep-ph/0305159] [SPIRES].

    Article  ADS  Google Scholar 

  22. A. Bandyopadhyay, S. Choubey, S. Goswami and S.T. Petcov, Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes, Phys. Rev. D 75 (2007) 093007 [hep-ph/0608323] [SPIRES].

    ADS  Google Scholar 

  23. J.N. Bahcall, S. Basu, M. Pinsonneault and A.M. Serenelli, Helioseismological Implications of Recent Solar Abundance Determinations, Astrophys. J. 618 (2005) 1049 [astro-ph/0407060] [SPIRES].

    Article  ADS  Google Scholar 

  24. N. Grevesse and A.J. Sauval, Standard solar composition, Space Sci. Rev. 85 (1998) 161.

    Article  ADS  Google Scholar 

  25. M. Asplund, N. Grevesse and J. Sauval, The solar chemical composition, Nucl. Phys. A 777 (2006) 1 [astro-ph/0410214] [SPIRES].

    ADS  Google Scholar 

  26. M. Asplund, N. Grevesse, A.J. Sauval and P. Scott, The chemical composition of the Sun, Ann. Rev. Astron. Astrophys. 47 (2009) 481 [arXiv:0909.0948] [SPIRES].

    Article  ADS  Google Scholar 

  27. W.J. Chaplin et al., Solar heavy element abundance: constraints from frequency separation ratios of low-degree p modes, Astrophys. J. 670 (2007) 872 [arXiv:0705.3154] [SPIRES].

    Article  ADS  Google Scholar 

  28. S. Basu et al., Solar abundances and helioseismology: fine structure spacings and separation ratios of low-degree p modes, Astrophys. J. 655 (2007) 660 [astro-ph/0610052] [SPIRES].

    Article  ADS  Google Scholar 

  29. A. Serenelli, S. Basu, J.W. Ferguson and M. Asplund, New Solar Composition: The Problem With Solar Models Revisited, arXiv:0909.2668 [SPIRES].

  30. J.N. Bahcall, The luminosity constraint on solar neutrino fluxes, Phys. Rev. C 65 (2002) 025801 [hep-ph/0108148] [SPIRES].

    ADS  Google Scholar 

  31. B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [SPIRES].

    Article  ADS  Google Scholar 

  32. R.L. Hahn, Radiochemical solar neutrino experiments, ‘successful and otherwise’, J. Phys. Conf. Ser. 136 (2008) 022003.

    Article  ADS  Google Scholar 

  33. SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [SPIRES].

    ADS  Google Scholar 

  34. Super-Kamkiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [SPIRES].

    ADS  Google Scholar 

  35. SNO collaboration, B. Aharmim et al., Measurement of the nu/e and total B-8 solar neutrino fluxes with the Sudbury Neutrino Observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [SPIRES].

    ADS  Google Scholar 

  36. SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase SNO data set, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [SPIRES].

    ADS  Google Scholar 

  37. SNO collaboration, B. Aharmim et al., An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [SPIRES].

    Article  ADS  Google Scholar 

  38. T.B. Collaboration, Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, arXiv:0808.2868 [SPIRES].

  39. SNO collaboration, B. Aharmim et al., Low Energy Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory, arXiv:0910.2984 [SPIRES].

  40. The Borexino collaboration, C. Arpesella et al., Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [SPIRES].

    Article  ADS  Google Scholar 

  41. KamLAND collaboration, I. Shimizu, KamLAND (anti-neutrino status), J. Phys. Conf. Ser. 120 (2008) 052022.

    Article  ADS  Google Scholar 

  42. M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].

    Article  ADS  Google Scholar 

  43. CHOOZ collaboration, M. Apollonio et al., Limits on Neutrino Oscillations from the CHOOZ Experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [SPIRES].

    ADS  Google Scholar 

  44. K2K collaboration, M.H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].

    ADS  Google Scholar 

  45. MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].

    Article  ADS  Google Scholar 

  46. MINOS collaboration, P. Adamson et al., Search for muon-neutrino to electron-neutrino transitions in MINOS, Phys. Rev. Lett. 103 (2009) 261802 [arXiv:0909.4996] [SPIRES].

    Article  ADS  Google Scholar 

  47. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].

    Article  Google Scholar 

  48. J.N. Bahcall and P.I. Krastev, How well do we (and will we) know solar neutrino fluxes and oscillation parameters?, Phys. Rev. D 53 (1996) 4211 [hep-ph/9512378] [SPIRES].

    ADS  Google Scholar 

  49. M. Spiro and D. Vignaud, Solar model independent neutrino oscillation signals in the forthcoming solar neutrino experiments?, Phys. Lett. B 242 (1990) 279 [SPIRES].

    ADS  Google Scholar 

  50. M. Misiaszek, Last Borexino result, talk given at the 2009 Europhysics Conference on High Energy Physics, Krakow, Poland, July 16–22, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Maltoni.

Additional information

ArXiv ePrint: 0910.4584

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Garcia, M.C., Maltoni, M. & Salvado, J. Direct determination of the solar neutrino fluxes from solar neutrino data. J. High Energ. Phys. 2010, 72 (2010). https://doi.org/10.1007/JHEP05(2010)072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)072

Keywords

Navigation