Skip to main content
Log in

Black hole thermodynamics and massive gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the generalized laws of thermodynamics in massive gravity. Making use of explicit black hole solutions, we devise black hole merger processes in which i) total entropy of the system decreases ii) the zero-temperature extremal black hole is created. Thus, both second and third laws of thermodynamics are violated. In both cases, the violation can be traced back to the presence of negative-mass black holes, which, in turn, is related to the violation of the null energy condition. The violation of the third law of thermodynamics implies, in particular, that a naked singularity may be created as a result of the evolution of a singularity-free state. This may signal a problem in the model, unless the creation of the negative-mass black holes from positive-mass states can be forbidden dynamically or the naked singularity may somehow be resolved in a full quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Ann. Phys. 305 (2003) 96 [hep-th/0210184] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [SPIRES].

    Article  MathSciNet  Google Scholar 

  3. S.L. Dubovsky, Phases of massive gravity, JHEP 10 (2004) 076 [hep-th/0409124] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. V.A. Rubakov, Lorentz-violating graviton masses: getting around ghosts, low strong coupling scale and VDVZ discontinuity, hep-th/0407104 [SPIRES].

  5. S.L. Dubovsky, P.G. Tinyakov and I.I. Tkachev, Cosmological attractors in massive gravity, Phys. Rev. D 72 (2005) 084011 [hep-th/0504067] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. S. Dubovsky, P. Tinyakov and M. Zaldarriaga, Bumpy black holes from spontaneous Lorentz violation, JHEP 11 (2007) 083 [arXiv:0706.0288] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. M.V. Bebronne and P.G. Tinyakov, Black hole solutions in massive gravity, JHEP 04 (2009) 100 [arXiv:0902.3899] [SPIRES].

    Article  ADS  Google Scholar 

  8. V.A. Rubakov and P.G. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp. 51 (2008) 759 [arXiv:0802.4379] [SPIRES].

    Article  ADS  Google Scholar 

  9. S.W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971) 1344 [SPIRES].

    Article  ADS  Google Scholar 

  10. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. J.M. Maldacena and A. Strominger, Statistical entropy of four-dimensional extremal black holes, Phys. Rev. Lett. 77 (1996) 428 [hep-th/9603060] [SPIRES].

    Article  ADS  Google Scholar 

  13. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. S.L. Dubovsky and S.M. Sibiryakov, Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind, Phys. Lett. B 638 (2006) 509 [hep-th/0603158] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. B. Feldstein, Spontaneous Lorentz violation, negative energy and the second law of thermodynamics, Phys. Rev. D 80 (2009) 044020 [arXiv:0904.1212] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. S. Mukohyama, Ghost condensate and generalized second law, JHEP 09 (2009) 070 [arXiv:0901.3595] [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Mukohyama, Can ghost condensate decrease entropy?, Open Astron. J. 3 (2010) 30 [arXiv:0908.4123] [SPIRES].

    Article  ADS  Google Scholar 

  18. J.D. Bekenstein, Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D 70 (2004) 083509 [astro-ph/0403694] [SPIRES].

    ADS  Google Scholar 

  19. E. Sagi and J.D. Bekenstein, Black holes in the TeVeS theory of gravity and their thermodynamics, Phys. Rev. D 77 (2008) 024010 [arXiv:0708.2639] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. Z. Berezhiani, D. Comelli, F. Nesti and L. Pilo, Exact spherically symmetric solutions in massive gravity, JHEP 07 (2008) 130 [arXiv:0803.1687] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. S.L. Dubovsky, P.G. Tinyakov and I.I. Tkachev, Massive graviton as a testable cold dark matter candidate, Phys. Rev. Lett. 94 (2005) 181102 [hep-th/0411158] [SPIRES].

    Article  ADS  Google Scholar 

  22. M.V. Bebronne and P.G. Tinyakov, Massive gravity and structure formation, Phys. Rev. D 76 (2007) 084011 [arXiv:0705.1301] [SPIRES].

    ADS  Google Scholar 

  23. J.M. Nester, A new gravitational energy expression with a simple positivity proof, Phys. Lett. A 83 (1981) 241 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. E. Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981) 381 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. P. Schoen and S.T. Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979) 45 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. P. Schoen and S.T. Yau, Positivity of the total mass of a general space-time, Phys. Rev. Lett. 43 (1979) 1457 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Arkani-Hamed, H.-C. Cheng, M.A. Luty, S. Mukohyama and T. Wiseman, Dynamics of gravity in a Higgs phase, JHEP 01 (2007) 036 [hep-ph/0507120] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. M. Visser, Dirty black holes: entropy as a surface term, Phys. Rev. D 48 (1993) 5697 [hep-th/9307194] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. V. Iyer and R.M. Wald, A comparison of Noether charge and euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. R. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984).

    MATH  Google Scholar 

  35. S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. D. Comelli, F. Nesti and L. Pilo, Stars and (furry) black holes in Lorentz breaking massive gravity, arXiv:1010.4773 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Capela.

Additional information

ArXiv ePrint: 1102.0479

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capela, F., Tinyakov, P.G. Black hole thermodynamics and massive gravity. J. High Energ. Phys. 2011, 42 (2011). https://doi.org/10.1007/JHEP04(2011)042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)042

Keywords

Navigation