Skip to main content
Log in

Random matrix theory of unquenched two-colour QCD with nonzero chemical potential

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We solve a random two-matrix model with two real asymmetric matrices whose primary purpose is to describe certain aspects of quantum chromodynamics with two colours and dynamical fermions at nonzero quark chemical potential μ. In this symmetry class the determinant of the Dirac operator is real but not necessarily positive. Despite this sign problem the unquenched matrix model remains completely solvable and provides detailed predictions for the Dirac operator spectrum in two different physical scenarios/limits: (i) the ε-regime of chiral perturbation theory at small μ, where μ 2 multiplied by the volume remains fixed in the infinite-volume limit and (ii) the high-density regime where a BCS gap is formed and μ is unscaled. We give explicit examples for the complex, real, and imaginary eigenvalue densities including N f = 2 non-degenerate flavours. Whilst the limit of two degenerate masses has no sign problem and can be tested with standard lattice techniques, we analyse the severity of the sign problem for non-degenerate masses as a function of the mass split and of μ.

On the mathematical side our new results include an analytical formula for the spectral density of real Wishart eigenvalues in the limit (i) of weak non-Hermiticity, thus completing the previous solution of the corresponding quenched model of two real asymmetric Wishart matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [SPIRES].

    Article  ADS  Google Scholar 

  2. P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009) 010 [arXiv:1005.0539] [SPIRES].

  3. M.G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [SPIRES].

    Article  ADS  Google Scholar 

  4. R. Rapp, T. Schafer, E.V. Shuryak and M. Velkovsky, High-density QCD and instantons, Annals Phys. 280 (2000) 35 [hep-ph/9904353] [SPIRES].

    Article  ADS  Google Scholar 

  5. K. Fukushima, Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop, Phys. Rev. D 77 (2008) 114028 [arXiv:0803.3318] [SPIRES].

    ADS  Google Scholar 

  6. A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov and J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58 (1998) 096007 [hep-ph/9804290] [SPIRES].

    ADS  Google Scholar 

  7. S. Hands et al., Numerical study of dense adjoint matter in two color QCD, Eur. Phys. J. C 17 (2000) 285 [hep-lat/0006018] [SPIRES].

    Article  ADS  Google Scholar 

  8. S. Hands, I. Montvay, L. Scorzato and J. Skullerud, Diquark condensation in dense adjoint matter, Eur. Phys. J. C 22 (2001) 451 [hep-lat/0109029] [SPIRES].

    Article  ADS  Google Scholar 

  9. J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [SPIRES].

    Article  ADS  Google Scholar 

  10. J.B. Kogut, D.K. Sinclair, S.J. Hands and S.E. Morrison, Two-colour QCD at non-zero quark-number density, Phys. Rev. D 64 (2001) 094505 [hep-lat/0105026] [SPIRES].

    ADS  Google Scholar 

  11. D.T. Son, Superconductivity by long-range color magnetic interaction in high-density quark matter, Phys. Rev. D 59 (1999) 094019 [hep-ph/9812287] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. T. Schafer, QCD and the eta’ mass: Instantons or confinement?, Phys. Rev. D 67 (2003) 074502 [hep-lat/0211035] [SPIRES].

    ADS  Google Scholar 

  13. T. Kanazawa, T. Wettig and N. Yamamoto, Chiral Lagrangian and spectral sum rules for dense two-color QCD, JHEP 08 (2009) 003 [arXiv:0906.3579] [SPIRES].

    Article  ADS  Google Scholar 

  14. C.W.J. Beenakker, Applications of random matrix theory to condensed matter and optical physics, arXiv:0904.1432 to appear in The Oxford Handbook of Random Matrix Theory, G. Akemann, J. Baik and P. Di Francesco eds., Oxford University Press (2011).

  15. A. Zabrodin, Random matrices and Laplacian growth, arXiv:0907.4929 to appear in The Oxford Handbook of Random Matrix Theory, G. Akemann, J. Baik and P. Di Francesco eds., Oxford University Press (2011).

  16. J.P. Bouchaud and M. Potters, Financial A pplications of Random Matrix Theory: a short review, arXiv:0910.1205 to appear in The Oxford Handbook of Random Matrix Theory, G. Akemann, J. Baik and P. Di Francesco eds., Oxford University Press (2011).

  17. J.J.M. Verbaarschot, Handbook Article on Applications of Random Matrix Theory to QCD, arXiv:0910.4134 [SPIRES] to appear in The Oxford Handbook of Random Matrix Theory, G. Akemann, J. Baik and P. Di Francesco eds., Oxford University Press (2011).

  18. Y.V. Fyodorov and D.V. Savin, Resonance Scattering of Waves in Chaotic Systems, arXiv:1003.0702 to appear in The Oxford Handbook of Random Matrix Theory, G. Akemann, J. Baik and P. Di Francesco eds., Oxford University Press (2011).

  19. P.L. Ferrari and H. Spohn, Random Growth Models, arXiv:1003.0881 to appear in The Oxford Handbook of Random Matrix Theory, G. Akemann, J. Baik and P. Di Francesco eds., Oxford University Press (2011).

  20. S.N. Majumdar, Extreme Eigenvalues of Wishart Matrices: Application to Entangled Bipartite System, arXiv:1005.4515 to appear in The Oxford Handbook of Random Matrix Theory, G. Akemann, J. Baik and P. Di Francesco eds., Oxford University Press (2011).

  21. P. Zinn-Justin and J.B. Zuber, Knot theory and matrix integrals, arXiv:1006.1812 to appear in The Oxford Handbook of Random Matrix Theory, G. Akemann, J. Baik and P. Di Francesco eds., Oxford University Press (2011).

  22. E.V. Shuryak and J.J.M. Verbaarschot, Random matrix theory and spectral sum rules for the Dirac operator in QCD, Nucl. Phys. A 560 (1993) 306 [hep-th/9212088] [SPIRES].

    ADS  Google Scholar 

  23. J.J.M. Verbaarschot and T. Wettig, Random matrix theory and chiral symmetry in QCD, Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [hep-ph/0003017] [SPIRES].

    Article  ADS  Google Scholar 

  24. G. Akemann, Matrix models and QCD with chemical potential, Int. J. Mod. Phys. A 22 (2007) 1077 [hep-th/0701175] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. M.A. Stephanov, Random matrix model of QCD at finite density and the nature of the quenched limit, Phys. Rev. Lett. 76 (1996) 4472 [hep-lat/9604003] [SPIRES].

    Article  ADS  Google Scholar 

  26. J.C. Osborn, Universal results from an alternate random matrix model for QCD with a baryon chemical potential, Phys. Rev. Lett. 93 (2004) 222001 [hep-th/0403131] [SPIRES].

    Article  ADS  Google Scholar 

  27. G. Akemann, J.C. Osborn, K. Splittorff and J.J.M. Verbaarschot, Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential, Nucl. Phys. B 712 (2005) 287 [hep-th/0411030] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Akemann, The complex Laguerre symplectic ensemble of non-Hermitian matrices, Nucl. Phys. B 730 (2005) 253 [hep-th/0507156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. G. Akemann and F. Basile, Massive partition functions and complex eigenvalue correlations in Matrix Models with symplectic symmetry, Nucl. Phys. B 766 (2007) 150 [math-ph/0606060] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. G. Akemann, M.J. Phillips and H. J. Sommers, Characteristic polynomials in real Ginibre ensembles, J. Phys. A 42 (2009) 012001 [arXiv:0810.1458].

    MathSciNet  ADS  Google Scholar 

  31. A.M. Halasz, J.C. Osborn and J.J.M. Verbaarschot, Random matrix triality at nonzero chemical potential, Phys. Rev. D 56 (1997) 7059 [hep-lat/9704007] [SPIRES].

    ADS  Google Scholar 

  32. J. Gasser and H. Leutwyler, Thermodynamics of Chiral Symmetry, Phys. Lett. B 188 (1987) 477 [SPIRES].

    ADS  Google Scholar 

  33. T. Kanazawa, T. Wettig and N. Yamamoto, Chiral random matrix theory for two-color QCD at high density, Phys. Rev. D 81 (2010) 081701 [arXiv:0912.4999] [SPIRES].

    ADS  Google Scholar 

  34. G. Akemann, M.J. Phillips and H.J. Sommers, The chiral Gaussian two-matrix ensemble of real asymmetric matrices, J. Phys. A 43 (2010) 085211 [arXiv:0911.1276] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. Y.V. Fyodorov, B.A. Khoruzhenko and H.-J. Sommers, Almost-Hermitian Random Matrices: Eigenvalue Density in the Complex Plane, Phys. Lett. A 226 (1997) 46 [cond-mat/9606173] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. Y.V. Fyodorov, B.A. Khoruzhenko and H.-J. Sommers, Almost Hermitian Random Matrices: Crossover from Wigner-Dyson to Ginibre Eigenvalue Statistics, Phys. Rev. Lett. 79 (1997) 557 [cond-mat/9703152] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. G. Akemann, M. Kieburg and M.J. Phillips, Skew-orthogonal Laguerre polynomials for chiral real asymmetric random matrices, J. Phys. A 43 (2010) 375207 [arXiv:1005.2983] [SPIRES].

    MathSciNet  Google Scholar 

  38. B. Klein, D. Toublan and J.J.M. Verbaarschot, Diquark and pion condensation in random matrix models for two-color QCD, Phys. Rev. D 72 (2005) 015007 [hep-ph/0405180] [SPIRES].

    ADS  Google Scholar 

  39. J.C. Osborn, K. Splittorff and J.J.M. Verbaarschot, Chiral symmetry breaking and the Dirac spectrum at nonzero chemical potential, Phys. Rev. Lett. 94 (2005) 202001 [hep-th/0501210] [SPIRES].

    Article  ADS  Google Scholar 

  40. J.C. Osborn, K. Splittorff and J.J.M. Verbaarschot, Chiral Condensate at Nonzero Chemical Potential in the Microscopic Limit of QCD, Phys. Rev. D 78 (2008) 065029 [arXiv:0805.1303] [SPIRES].

    ADS  Google Scholar 

  41. J.J.M. Verbaarschot, The Spectrum of the Dirac operator near zero virtuality for N c =2 and chiral random matrix theory, Nucl. Phys. B 426 (1994) 559 [hep-th/9401092] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. A.M. Halasz and J.J.M. Verbaarschot, Effective Lagrangians and chiral random matrix theory, Phys. Rev. D 52 (1995) 2563 [hep-th/9502096] [SPIRES].

    ADS  Google Scholar 

  43. T. Kanazawa, T. Wettig and N. Yamamoto, Chiral Lagrangian and spectral sum rules for two-color QCD at high density, PoS(LAT2009)195 [arXiv:0910.2300] [SPIRES].

  44. K. Splittorff and J.J.M. Verbaarschot, Lessons from Random Matrix Theory for QCD at Finite Density, arXiv:0809.4503 [SPIRES].

  45. J.C. Osborn, K. Splittorff and J.J.M. Verbaarschot, Phase Diagram of the Dirac Spectrum at Nonzero Chemical Potential, Phys. Rev. D 78 (2008) 105006 [arXiv:0807.4584] [SPIRES].

    ADS  Google Scholar 

  46. K. Splittorff and J.J.M. Verbaarschot, Phase of the Fermion Determinant at Nonzero Chemical Potential, Phys. Rev. Lett. 98 (2007) 031601 [hep-lat/0609076] [SPIRES].

    Article  ADS  Google Scholar 

  47. K. Splittorff and J.J.M. Verbaarschot, The QCD sign problem for small chemical potential, Phys. Rev. D 75 (2007) 116003 [hep-lat/0702011] [SPIRES].

    ADS  Google Scholar 

  48. K. Splittorff, The sign problem in the ε-regime of QCD, PoS(LAT2006)023 [hep-lat/0610072] [SPIRES].

  49. G. Akemann and G. Vernizzi, Characteristic polynomials of complex random matrix models, Nucl. Phys. B 660 (2003) 532 [hep-th/0212051] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. J.C.R. Bloch and T. Wettig, Random matrix analysis of the QCD sign problem for general topology, JHEP 03 (2009) 100 [arXiv:0812.0324] [SPIRES].

    Article  ADS  Google Scholar 

  51. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, 7th Edition, Academic Press, London U.K. (2007).

    MATH  Google Scholar 

  52. H.J. Sommers and W. Wieczorek, General Eigenvalue Correlations for the Real Ginibre Ensemble, J. Phys. A 41 (2008) 405003 [arXiv:0806.2756].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kanazawa.

Additional information

ArXiv ePrint: 1012.4461

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akemann, G., Kanazawa, T., Phillips, M.J. et al. Random matrix theory of unquenched two-colour QCD with nonzero chemical potential. J. High Energ. Phys. 2011, 66 (2011). https://doi.org/10.1007/JHEP03(2011)066

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)066

Keywords

Navigation