Skip to main content
Log in

Heat kernel expansion and induced action for the matrix model Dirac operator

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the quantum effective action induced by integrating out fermions in Yang-Mills matrix models on a 4-dimensional background, expanded in powers of a gauge-invariant UV cutoff. The resulting action is recast into the form of generalized matrix models, manifestly preserving the SO(D) symmetry of the bare action. This provides non-commutative (NC) analogs of the Seeley-de Witt coefficients for the emergent gravity which arises on NC branes, such as curvature terms. From the gauge theory point of view, this provides strong evidence that the non-commutative \( \mathcal{N} = 4 \) SYM has a hidden SO(10) symmetry even at the quantum level, which is spontaneously broken by the space-time background. The geometrical view proves to be very powerful, and allows to predict nontrivial loop computations in the gauge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000) 176 [hep-th/9908141] [SPIRES].

    Article  ADS  Google Scholar 

  2. H. Steinacker, Emergent Gravity from Noncommutative Gauge Theory, JHEP 12 (2007) 049 [arXiv:0708.2426] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. H. Steinacker, Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models, Nucl. Phys. B 810 (2009) 1 [arXiv:0806.2032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040.

    ADS  Google Scholar 

  6. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Imai, Y. Kitazawa, Y. Takayama and D. Tomino, Effective actions of matrix models on homogeneous spaces, Nucl. Phys. B 679 (2004) 143 [hep-th/0307007] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Castro-Villarreal, R. Delgadillo-Blando and B. Ydri, Quantum effective potential for U(1) fields on S L 2 × S L 2, JHEP 09 (2005) 066 [hep-th/0506044] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. H. Steinacker, Quantized gauge theory on the fuzzy sphere as random matrix model, Nucl. Phys. B 679 (2004) 66 [hep-th/0307075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. T. Azuma, S. Bal, K. Nagao and J. Nishimura, Perturbative versus nonperturbative dynamics of the fuzzy S 2 × S 2, JHEP 09 (2005) 047 [hep-th/0506205] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. H. Grosse, H. Steinacker and M. Wohlgenannt, Emergent Gravity, Matrix Models and UV/IR Mixing, JHEP 04 (2008) 023 [arXiv:0802.0973] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. V. Gayral, B. Iochum and D.V. Vassilevich, Heat kernel and number theory on NC-torus, Commun. Math. Phys. 273 (2007) 415 [hep-th/0607078] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. D.V. Vassilevich, Heat kernel, effective action and anomalies in noncommutative theories, JHEP 08 (2005) 085 [hep-th/0507123] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Armoni, Comments on perturbative dynamics of non-commutative Yang-Mills theory, Nucl. Phys. B 593 (2001) 229 [hep-th/0005208] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-Loop Superconformal and Yangian Symmetries of Scattering Amplitudes in N = 4 Super Yang-Mills, JHEP 04 (2010) 085 [arXiv:1002.1733] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. Z. Bern, L.J. Dixon and D.A. Kosower, All next-to-maximally helicity-violating one-loop gluon amplitudes in N = 4 super-Yang-Mills theory, Phys. Rev. D 72 (2005) 045014 [hep-th/0412210] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. A.H. Chamseddine and A. Connes, The spectral action principle, Commun. Math. Phys. 186 (1997) 731 [hep-th/9606001] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. D. Klammer and H. Steinacker, Fermions and Emergent Noncommutative Gravity, JHEP 08 (2008) 074 [arXiv:0805.1157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Klammer and H. Steinacker, Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions, JHEP 02 (2010) 074 [arXiv:0909.5298] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, second edition, CRC Press Inc., Boca Raton U.S.A. (1995).

    MATH  Google Scholar 

  23. D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. R.J. Szabo, Quantum Field Theory on Noncommutative Spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  25. D.N. Blaschke, E. Kronberger, R.I.P. Sedmik and M. Wohlgenannt, Gauge Theories on Deformed Spaces, SIGMA 6 (2010) 062 [arXiv:1004.2127] [SPIRES].

    MathSciNet  Google Scholar 

  26. I. Jack and D.R.T. Jones, Ultra-violet finiteness in noncommutative supersymmetric theories, New J. Phys. 3 (2001) 19 [hep-th/0109195] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Sasakura, Heat kernel coefficients for compact fuzzy spaces, JHEP 12 (2004) 009 [hep-th/0411029] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. D.N. Blaschke and H. Steinacker, Curvature and Gravity Actions for Matrix Models, Class. Quant. Grav. 27 (2010) 165010 [arXiv:1003.4132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. D.N. Blaschke and H. Steinacker, Curvature and Gravity Actions for Matrix Models II: the case of general Poisson structure, Class. Quant. Grav. 27 (2010) 235019 [arXiv:1007.2729] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. H. Steinacker, Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models, JHEP 02 (2009) 044 [arXiv:0812.3761] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. H. Grosse and M. Wohlgenannt, Induced gauge theory on a noncommutative space, Eur. Phys. J. C 52 (2007) 435 [hep-th/0703169] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Steinacker.

Additional information

ArXiv ePrint: 1012.4344

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaschke, D.N., Steinacker, H. & Wohlgenannt, M. Heat kernel expansion and induced action for the matrix model Dirac operator. J. High Energ. Phys. 2011, 2 (2011). https://doi.org/10.1007/JHEP03(2011)002

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)002

Keywords

Navigation