Skip to main content
Log in

Unnatural origin of fermion masses for technicolor

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We explore the scenario in which the breaking of the electroweak symmetry is due to the simultaneous presence and interplay of a dynamical sector and an unnatural elementary Higgs. We introduce a low energy effective Lagrangian and constrain the various couplings via direct search limits and electroweak and flavor precision tests. We find that the model we study is a viable model of dynamical breaking of the electroweak symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].

    ADS  Google Scholar 

  2. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].

    ADS  Google Scholar 

  3. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].

    Article  ADS  Google Scholar 

  4. F. Sannino, Dynamical stabilization of the Fermi scale: phase diagram of strongly coupled theories for (minimal) walking technicolor and unparticles, arXiv:0804.0182 [SPIRES].

  5. F. Sannino and K. Tuominen, Techniorientifold, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [SPIRES].

    ADS  Google Scholar 

  6. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: predictions for LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [SPIRES].

    ADS  Google Scholar 

  7. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs and precision electroweak measurements on the Z resonance: an update, Phys. Rev. D 73 (2006) 037701 [hep-ph/0510217] [SPIRES].

    ADS  Google Scholar 

  8. D.D. Dietrich and F. Sannino, Walking in the SU(N), Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. T.A. Ryttov and F. Sannino, Conformal windows of SU(N) gauge theories, higher dimensional representations and the size of the unparticle world, Phys. Rev. D 76 (2007) 105004 [arXiv:0707.3166] [SPIRES].

    ADS  Google Scholar 

  10. T.A. Ryttov and F. Sannino, Supersymmetry inspired QCD β-function, Phys. Rev. D 78 (2008) 065001 [arXiv:0711.3745] [SPIRES].

    ADS  Google Scholar 

  11. F. Sannino, Conformal windows of Sp(2N) and SO(N) gauge theories, Phys. Rev. D 79 (2009) 096007 [arXiv:0902.3494] [SPIRES].

    ADS  Google Scholar 

  12. T.A. Ryttov and F. Sannino, Ultra minimal technicolor and its dark matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [SPIRES].

    ADS  Google Scholar 

  13. T.A. Ryttov and F. Sannino, Conformal house, arXiv:0906.0307 [SPIRES].

  14. O. Antipin and K. Tuominen, Resizing the conformal window: a β-function ansatz, arXiv:0909.4879 [SPIRES].

  15. D.D. Dietrich, A mass-dependent β-function, Phys. Rev. D 80 (2009) 065032 [arXiv:0908.1364] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. F. Sannino, QCD dual, Phys. Rev. D 80 (2009) 065011 [arXiv:0907.1364] [SPIRES].

    ADS  Google Scholar 

  17. F. Sannino, Higher representations duals, Nucl. Phys. B 830 (2010) 179 [arXiv:0909.4584] [SPIRES].

    Article  ADS  Google Scholar 

  18. R. Foadi, M.T. Frandsen, T.A. Ryttov and F. Sannino, Minimal walking technicolor: set up for collider physics, Phys. Rev. D 76 (2007) 055005 [arXiv:0706.1696] [SPIRES].

    ADS  Google Scholar 

  19. R. Foadi, M.T. Frandsen and F. Sannino, Constraining walking and custodial technicolor, Phys. Rev. D 77 (2008) 097702 [arXiv:0712.1948] [SPIRES].

    ADS  Google Scholar 

  20. A. Belyaev et al., Technicolor walks at the LHC, Phys. Rev. D 79 (2009) 035006 [arXiv:0809.0793] [SPIRES].

    ADS  Google Scholar 

  21. A.R. Zerwekh, Associate Higgs and gauge boson production at hadron colliders in a model with vector resonances, Eur. Phys. J. C 46 (2006) 791 [hep-ph/0512261] [SPIRES].

    Article  ADS  Google Scholar 

  22. R. Foadi and F. Sannino, WW scattering in walking technicolor: no discovery scenarios at the CERN LHC and ILC, Phys. Rev. D 78 (2008) 037701 [arXiv:0801.0663] [SPIRES].

    ADS  Google Scholar 

  23. R. Foadi, M. Jarvinen and F. Sannino, Unitarity in technicolor, Phys. Rev. D 79 (2009) 035010 [arXiv:0811.3719] [SPIRES].

    ADS  Google Scholar 

  24. O. Antipin, M. Heikinheimo and K. Tuominen, Natural fourth generation of leptons, JHEP 10 (2009) 018 [arXiv:0905.0622] [SPIRES].

    Article  ADS  Google Scholar 

  25. M.T. Frandsen, I. Masina and F. Sannino, Fourth lepton family is natural in technicolor, arXiv:0905.1331 [SPIRES].

  26. O. Antipin and K. Tuominen, Discriminating between technicolor and warped extra dimensional model via pp → ZZ channel, Phys. Rev. D 79 (2009) 075011 [arXiv:0901.4243] [SPIRES].

    ADS  Google Scholar 

  27. R. Foadi, M.T. Frandsen and F. Sannino, Technicolor dark matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [SPIRES].

    ADS  Google Scholar 

  28. S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [SPIRES].

    ADS  Google Scholar 

  29. S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [SPIRES].

    ADS  Google Scholar 

  30. K. Kainulainen, K. Tuominen and J. Virkajarvi, The WIMP of a minimal technicolor theory, Phys. Rev. D 75 (2007) 085003 [hep-ph/0612247] [SPIRES].

    ADS  Google Scholar 

  31. M. Jarvinen, T.A. Ryttov and F. Sannino, The electroweak phase transition in ultra minimal technicolor, Phys. Rev. D 79 (2009) 095008 [arXiv:0903.3115] [SPIRES].

    ADS  Google Scholar 

  32. M. Jarvinen, T.A. Ryttov and F. Sannino, Extra electroweak phase transitions from strong dynamics, Phys. Lett. B 680 (2009) 251 [arXiv:0901.0496] [SPIRES].

    ADS  Google Scholar 

  33. J.M. Cline, M. Jarvinen and F. Sannino, The electroweak phase transition in nearly conformal technicolor, Phys. Rev. D 78 (2008) 075027 [arXiv:0808.1512] [SPIRES].

    ADS  Google Scholar 

  34. S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].

    ADS  Google Scholar 

  35. L. Del Debbio, M.T. Frandsen, H. Panagopoulos and F. Sannino, Higher representations on the lattice: perturbative studies, JHEP 06 (2008) 007 [arXiv:0802.0891] [SPIRES].

    Article  ADS  Google Scholar 

  36. S. Catterall, J. Giedt, F. Sannino and J. Schneible, Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks, JHEP 11 (2008) 009 [arXiv:0807.0792] [SPIRES].

    Article  ADS  Google Scholar 

  37. A.J. Hietanen, J. Rantaharju, K. Rummukainen and K. Tuominen, Spectrum of SU(2) lattice gauge theory with two adjoint Dirac flavours, JHEP 05 (2009) 025 [arXiv:0812.1467] [SPIRES].

    Article  ADS  Google Scholar 

  38. A.J. Hietanen, K. Rummukainen and K. Tuominen, Evolution of the coupling constant in SU(2) lattice gauge theory with two adjoint fermions, Phys. Rev. D 80 (2009) 094504 [arXiv:0904.0864] [SPIRES].

    ADS  Google Scholar 

  39. Y. Shamir, B. Svetitsky and T. DeGrand, Zero of the discrete β-function in SU(3) lattice gauge theory with color sextet fermions, Phys. Rev. D 78 (2008) 031502 [arXiv:0803.1707] [SPIRES].

    ADS  Google Scholar 

  40. T. DeGrand, Y. Shamir and B. Svetitsky, Phase structure of SU(3) gauge theory with two flavors of symmetric-representation fermions, Phys. Rev. D 79 (2009) 034501 [arXiv:0812.1427] [SPIRES].

    ADS  Google Scholar 

  41. L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Conformal vs confining scenario in SU(2) with adjoint fermions, Phys. Rev. D 80 (2009) 074507 [arXiv:0907.3896] [SPIRES].

    ADS  Google Scholar 

  42. L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions, arXiv:0805.2058 [SPIRES].

  43. Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Chiral properties of SU(3) sextet fermions, JHEP 11 (2009) 103 [arXiv:0908.2466] [SPIRES].

    Article  ADS  Google Scholar 

  44. F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, Running of the coupling and quark mass in SU(2) with two adjoint fermions, arXiv:0910.2562 [SPIRES].

  45. D.K. Sinclair and J.B. Kogut, QCD thermodynamics with colour-sextet quarks, arXiv:0909.2019 [SPIRES].

  46. S. Dimopoulos and L. Susskind, Mass without scalars, Nucl. Phys. B 155 (1979) 237 [SPIRES].

    Article  ADS  Google Scholar 

  47. E. Eichten and K.D. Lane, Dynamical breaking of weak interaction symmetries, Phys. Lett. B 90 (1980) 125 [SPIRES].

    ADS  Google Scholar 

  48. H.S. Fukano and F. Sannino, Minimal flavor constraints for technicolor, arXiv:0908.2424 [SPIRES].

  49. E.H. Simmons, Phenomenology of a technicolor model with heavy scalar doublet, Nucl. Phys. B 312 (1989) 253 [SPIRES].

    Article  ADS  Google Scholar 

  50. M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [SPIRES].

    ADS  Google Scholar 

  51. S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625 [SPIRES].

    Article  ADS  Google Scholar 

  52. A. Kagan and S. Samuel, The family mass hierarchy problem in bosonic technicolor, Phys. Lett. B 252 (1990) 605 [SPIRES].

    ADS  Google Scholar 

  53. A. Kagan and S. Samuel, Renormalization group aspects of bosonic technicolor, Phys. Lett. B 270 (1991) 37 [SPIRES].

    ADS  Google Scholar 

  54. A. Kagan and S. Samuel, Bosonic technicolor in strings, Phys. Lett. B 284 (1992) 289 [SPIRES].

    ADS  Google Scholar 

  55. A. Kagan and S. Samuel, Multi-Higgs systems in bosonic technicolor: a model for SSC physics, Int. J. Mod. Phys. A 7 (1992) 1123 [SPIRES].

    ADS  Google Scholar 

  56. C.D. Carone and E.H. Simmons, Oblique corrections in technicolor with a scalar, Nucl. Phys. B 397 (1993) 591 [hep-ph/9207273] [SPIRES].

    Article  ADS  Google Scholar 

  57. C.D. Carone and H. Georgi, Technicolor with a massless scalar doublet, Phys. Rev. D 49 (1994) 1427 [hep-ph/9308205] [SPIRES].

    ADS  Google Scholar 

  58. C.D. Carone, E.H. Simmons and Y. Su, bsγ and \(Z \rightarrow b \bar{b} \) in technicolor with scalars, Phys. Lett. B 344 (1995) 287 [hep-ph/9410242] [SPIRES].

    ADS  Google Scholar 

  59. V. Hemmige and E.H. Simmons, Current bounds on technicolor with scalars, Phys. Lett. B 518 (2001) 72 [hep-ph/0107117] [SPIRES].

    ADS  Google Scholar 

  60. C.D. Carone, J. Erlich and J.A. Tan, Holographic bosonic technicolor, Phys. Rev. D 75 (2007) 075005 [hep-ph/0612242] [SPIRES].

    ADS  Google Scholar 

  61. A.R. Zerwekh, Two composite Higgs doublets: is it the low energy limit of a natural strong electroweak symmetry breaking sector?, arXiv:0907.4690 [SPIRES].

  62. R.S. Chivukula, A.G. Cohen and K.D. Lane, Aspects of dynamical electroweak symmetry breaking, Nucl. Phys. B 343 (1990) 554 [SPIRES].

    Article  ADS  Google Scholar 

  63. R. Sekhar Chivukula, N.D. Christensen, B. Coleppa and E.H. Simmons, The top triangle Moose: combining Higgsless and topcolor mechanisms for mass generation, Phys. Rev. D 80 (2009) 035011 [arXiv:0906.5567] [SPIRES].

    ADS  Google Scholar 

  64. A. Doff, A.A. Natale and P.S. Rodrigues da Silva, Light composite Higgs boson from the normalized Bethe-Salpeter equation, Phys. Rev. D 80 (2009) 055005 [arXiv:0905.2981] [SPIRES].

    ADS  Google Scholar 

  65. A. Doff and A.A. Natale, Scalar bosons in minimal and ultraminimal technicolor: masses, trilinear couplings and widths, arXiv:0912.1003 [SPIRES].

  66. M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [SPIRES].

    Article  ADS  Google Scholar 

  67. M. Dine and M. Srednicki, More supersymmetric technicolor, Nucl. Phys. B 202 (1982) 238 [SPIRES].

    Article  ADS  Google Scholar 

  68. B.A. Dobrescu, Fermion masses without Higgs: a supersymmetric technicolor model, Nucl. Phys. B 449 (1995) 462 [hep-ph/9504399] [SPIRES].

    Article  ADS  Google Scholar 

  69. S.B. Gudnason, T.A. Ryttov and F. Sannino, Gauge coupling unification via a novel technicolor model, Phys. Rev. D 76 (2007) 015005 [hep-ph/0612230] [SPIRES].

    ADS  Google Scholar 

  70. H. Georgi, Generalized dimensional analysis, Phys. Lett. B 298 (1993) 187 [hep-ph/9207278] [SPIRES].

    ADS  Google Scholar 

  71. P.M. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid. B 629 (2005) 114] [hep-ph/0406231] [SPIRES].

    ADS  Google Scholar 

  72. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [SPIRES].

    ADS  Google Scholar 

  73. T. Inami and C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes \(K_{L} \rightarrow \mu \bar{\mu}, K^{+} \rightarrow \pi^{+} v \bar{v} \) and \(K^{0} \leftrightarrow \bar{K}^{0} \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [SPIRES].

    Article  ADS  Google Scholar 

  74. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [SPIRES].

    Article  ADS  Google Scholar 

  75. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  76. A. Barroso, P.M. Ferreira and R. Santos, Neutral minima in two-Higgs doublet models, Phys. Lett. B 652 (2007) 181 [hep-ph/0702098] [SPIRES].

    ADS  Google Scholar 

  77. ALEPH, DELPHI and L3 collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

    ADS  Google Scholar 

  78. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  79. T. Appelquist and F. Sannino, The physical spectrum of conformal SU(N) gauge theories, Phys. Rev. D 59 (1999) 067702 [hep-ph/9806409] [SPIRES].

    ADS  Google Scholar 

  80. R. Sundrum and S.D.H. Hsu, Walking technicolor and electroweak radiative corrections, Nucl. Phys. B 391 (1993) 127 [hep-ph/9206225] [SPIRES].

    Article  ADS  Google Scholar 

  81. T. Appelquist, M. Piai and R. Shrock, Fermion masses and mixing in extended technicolor models, Phys. Rev. D 69 (2004) 015002 [hep-ph/0308061] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimmo Tuominen.

Additional information

ArXiv ePrint: 0910.3681

On leave of absence from Department of physics, University of Jyväskylä, Finland (Kimmo Tuominen)

Centre of Excellence for Particle Physics Phenomenology devoted to the understanding of the Origins of Mass in the universe (CP3-Origins)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antola, M., Heikinheimo, M., Sannino, F. et al. Unnatural origin of fermion masses for technicolor. J. High Energ. Phys. 2010, 50 (2010). https://doi.org/10.1007/JHEP03(2010)050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)050

Keywords

Navigation