Skip to main content
Log in

Hawking-Page phase transition in BTZ black hole revisited

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the Hawking-Page phase transition between the BTZ black hole of M ≥ 0 and the thermal soliton of M = −1. In this system, there exists a mass gap so that there does not seem to exist a continuous thermodynamic phase transition. We consistently construct the off-shell free energies of the black hole and the soliton by properly taking into account the conical space. And then, the continuous off-shell free energy to describe tunneling effect can be realized through non-equilibrium solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. D. Gross, M. Perry and L. Yaffe, Instability of flat space at finite temperature, Phys. Rev. D 25 (1982) 330 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. S. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J.W. York, Black hole thermodynamics and the euclidean Einstein action, Phys. Rev. D 33 (1986) 2092 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. R.C. Myers and J.Z. Simon, Black hole thermodynamics in Lovelock gravity, Phys. Rev. D 38 (1988) 2434 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R.B. Mann and T.G. Steele, Thermodynamics and quantum aspects of black holes in (1 + 1)-dimensions, Class. Quant. Grav. 9 (1992) 475 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. C.R. Nappi and A. Pasquinucci, Thermodynamics of two-dimensional black holes, Mod. Phys. Lett. A 7 (1992) 3337 [gr-qc/9208002] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. O. Zaslavsky, Thermodynamics of (2 + 1) black holes, Class. Quant. Grav. 11 (1994) L33 [INSPIRE].

    Article  ADS  Google Scholar 

  10. B. Reznik, Thermodynamics and evaporation of the (2 + 1)-dimensions black hole, Phys. Rev. D 51 (1995) 1728 [gr-qc/9403027] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. C.S. Peca and P. Lemos, Jose, Thermodynamics of Reissner-Nordstrom Anti-de Sitter black holes in the grand canonical ensemble, Phys. Rev. D 59 (1999) 124007 [gr-qc/9805004] [INSPIRE].

  12. S. Nojiri and S.D. Odintsov, Thermodynamics of Schwarzschild-(Anti-)de Sitter black holes with account of quantum corrections, Int. J. Mod. Phys. A 15 (2000) 989 [hep-th/9905089] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. Medved and G. Kunstatter, One loop corrected thermodynamics of the extremal and nonextremal spinning BTZ black hole, Phys. Rev. D 63 (2001) 104005 [hep-th/0009050] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. S. Nojiri and S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [Erratum ibid. B 542 (2002) 301] [hep-th/0109122] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and Anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R.-G. Cai, L.-M. Cao and N. Ohta, Mass and thermodynamics of Kaluza-Klein black holes with squashed horizons, Phys. Lett. B 639 (2006) 354 [hep-th/0603197] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. D. Anninos and G. Pastras, Thermodynamics of the Maxwell-Gauss-Bonnet Anti-de Sitter black hole with higher derivative gauge corrections, JHEP 07 (2009) 030 [arXiv:0807.3478] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Cadoni and C. Monni, BPS-like bound and thermodynamics of the charged BTZ black hole, Phys. Rev. D 80 (2009) 024034 [arXiv:0905.3517] [INSPIRE].

    ADS  Google Scholar 

  20. R. Banerjee and S. Ghosh, Generalised uncertainty principle, remnant mass and singularity problem in black hole thermodynamics, Phys. Lett. B 688 (2010) 224 [arXiv:1002.2302] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. R. Banerjee and D. Roychowdhury, Thermodynamics of phase transition in higher dimensional AdS black holes, JHEP 11 (2011) 004 [arXiv:1109.2433] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. S. Surya, K. Schleich and D.M. Witt, Phase transitions for flat AdS black holes, Phys. Rev. Lett. 86 (2001) 5231 [hep-th/0101134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Kleban, M. Porrati and R. Rabadán, Poincaré recurrences and topological diversity, JHEP 10 (2004) 030 [hep-th/0407192] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Carlip and C. Teitelboim, The off-shell black hole, Class. Quant. Grav. 12 (1995) 1699 [gr-qc/9312002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. R.B. Mann and S.N. Solodukhin, Quantum scalar field on three-dimensional (BTZ) black hole instanton: Heat kernel, effective action and thermodynamics, Phys. Rev. D 55 (1997) 3622 [hep-th/9609085] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. J.R. David, G. Mandal, S. Vaidya and S.R. Wadia, Point mass geometries, spectral flow and AdS 3 -CFT 2 correspondence, Nucl. Phys. B 564 (2000) 128 [hep-th/9906112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. Y. Kurita and M.-A. Sakagami, CFT description of three-dimensional Hawking-Page transition, Prog. Theor. Phys. 113 (2005) 1193 [hep-th/0403091] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Y.S. Myung, No Hawking-Page phase transition in three dimensions, Phys. Lett. B 624 (2005) 297 [hep-th/0506096] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. Y.S. Myung, Phase transition between the BTZ black hole and AdS space, Phys. Lett. B 638 (2006) 515 [gr-qc/0603051] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. N. Ogawa and T. Takayanagi, Higher derivative corrections to holographic entanglement entropy for AdS solitons, JHEP 10 (2011) 147 [arXiv:1107.4363] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Grumiller, R. McNees and S. Zonetti, Black holes in the conical ensemble, Phys. Rev. D 86 (2012) 124043 [arXiv:1210.6904] [INSPIRE].

    ADS  Google Scholar 

  34. D.V. Fursaev and S.N. Solodukhin, On the description of the riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Perez, D. Tempo and R. Troncoso, Gravitational solitons, hairy black holes and phase transitions in BHT massive gravity, JHEP 07 (2011) 093 [arXiv:1106.4849] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wontae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eune, M., Kim, W. & Yi, SH. Hawking-Page phase transition in BTZ black hole revisited. J. High Energ. Phys. 2013, 20 (2013). https://doi.org/10.1007/JHEP03(2013)020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)020

Keywords

Navigation