Skip to main content
Log in

Instanton partition functions in \( \mathcal{N} = 2 \) SU(N) gauge theories with a general surface operator, and their \( \mathcal{W} \)-algebra duals

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We write down an explicit conjecture for the instanton partition functions in 4d \( \mathcal{N} = 2 \) SU(N) gauge theories in the presence of a certain type of surface operator. These surface operators are classified by partitions of N , and for each partition there is an associated partition function. For the partition N = N we recover the Nekrasov formalism, and when N = 1 + + 1 we reproduce the result of Feigin et. al. For the case N = 1 + (N − 1) our expression is consistent with an alternative formulation in terms of a restricted SU(N) × SU(N) instanton partition function. When N = 1 + + 1 + 2 the partition functions can also be obtained perturbatively from certain \( \mathcal{W} \)-algebras known as quasi-superconformal algebras, in agreement with a recent general proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Wyllard, W-algebras and surface operators in N = 2 gauge theories, arXiv:1011.0289 [SPIRES].

  2. A. Braverman, B. Feigin, M. Finkelberg and L. Rybnikov, Afinite analog of the AGT relation I: finite \( \mathcal{W} \) -algebras and quasimaps’ spaces, arXiv:1008.3655 [SPIRES].

  3. D. Gaiotto, N= 2 dualities, arXiv:0904.2715 [SPIRES].

  4. E. Witten, Some comments on string dynamics, hep-th/9507121 [SPIRES].

  5. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. V.A. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with \( {\mathbb{Z}_n} \) Symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. M. Bershadsky and H. Ooguri, Hidden SL(n) Symmetry in Conformal Field Theories, Commun. Math. Phys. 126 (1989) 49 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990) 75 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. A.M. Polyakov, Gauge Transformations and Diffeomorphisms, Int. J. Mod. Phys. A 5 (1990) 833 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. M. Bershadsky, Conformal field theories via Hamiltonian reduction, Commun. Math. Phys. 139 (1991) 71 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. J. de Boer and T. Tjin, The Relation between quantum W algebras and Lie algebras, Commun. Math. Phys. 160 (1994) 317 [hep-th/9302006] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  13. V. Kac, S. Roan, and M. Wakimoto, Quantum reduction for affine superalgebras, Commun. Math. Phys. 241 (2003) 307 [math-ph/0302015] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  14. F.A. Bais, T. Tjin and P. van Driel, Covariantly coupled chiral algebras, Nucl. Phys. B 357 (1991) 632 [SPIRES].

    Article  ADS  Google Scholar 

  15. L. Feher, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, Generalized Toda theories and W algebras associated with integral gradings, Ann. Phys. 213 (1992) 1 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. L. Feher, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories, Phys. Rept. 222 (1992) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [SPIRES].

  19. A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Taki, On AGT Conjecture for Pure Super Yang-Mills and \( \mathcal{W} \) -algebra, arXiv:0912.4789 [SPIRES].

  22. N.A. Nekrasov, Seiberg-Witten Prepotential From Instanton Counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

  23. A. Braverman, Instanton counting via affine Lie algebras I: Equivariant J-functions of (affine) flag manifolds and Whittaker vectors, math/0401409.

  24. A. Braverman and P. Etingof, Instanton counting via affine Lie algebras. II: From Whittaker vectors to the Seiberg-Witten prepotential, math/0409441.

  25. H. Awata, H. Fuji, H. Kanno, M. Manabe and Y. Yamada, Localization with a Surface Operator, Irregular Conformal Blocks and Open Topological String, arXiv:1008.0574 [SPIRES].

  26. C. Kozcaz, S. Pasquetti, F. Passerini and N. Wyllard, Affine sl(N) conformal blocks from N = 2 SU(N) gauge theories, JHEP 01 (2011) 045 [arXiv:1008.1412] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. B. Feigin, M. Finkelberg, A. Negut and L. Rybnikov, Yangians and cohomology rings of Laumon spaces, arXiv:0812.4656 [SPIRES].

  28. L.J. Romans, Quasisuperconformal algebras in two-dimensions and Hamiltonian reduction, Nucl. Phys. B 357 (1991) 549 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. E.S. Fradkin and V.Y. Linetsky, Classification of superconformal algebras with quadratic nonlinearity, hep-th/9207035 [SPIRES].

  30. E.S. Fradkin and V.Y. Linetsky, Classification of superconformal and quasisuperconformal algebras in two-dimensions, Phys. Lett. B 291 (1992) 71 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. V.G. Kac and M. Wakimoto, Quantum reduction and representation theory of superconformal algebras, math-ph/0304011 [SPIRES].

  32. V.G. Kac and M. Wakimoto, Quantum reduction in the twisted case, Prog. Math. 237 (2005) 85 [math-ph/0404049] [SPIRES].

    MathSciNet  Google Scholar 

  33. B. Noyvert, Ramond sector of superconformal algebras via quantum reduction, JHEP 11 (2006) 045 [math-ph/0408061] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Arakawa, Representation theory of \( \mathcal{W} \) -algebras, II: Ramond twisted representations, arXiv:0802.1564 [SPIRES].

  35. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. C. Kozçaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [SPIRES].

    Article  ADS  Google Scholar 

  37. F. Fucito, J.F. Morales and R. Poghossian, Instantons on quivers and orientifolds, JHEP 10 (2004) 037 [hep-th/0408090] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. T. Dimofte, S. Gukov and L. Hollands, Vortex Counting and Lagrangian 3-manifolds, arXiv:1006.0977 [SPIRES].

  39. M. Taki, Surface Operator, Bubbling Calabi-Yau and AGT Relation, arXiv:1007.2524 [SPIRES].

  40. H. Nakajima and K. Yoshioka, Instanton counting on blowup. I, math/0306198.

  41. H. Nakajima and K. Yoshioka, Lectures on instanton counting, math/0311058.

  42. A. Negut, Laumon spaces and the Calogero-Sutherland integrable system, Invent. Math. 178 (2009) 299 [arXiv:0811.4454] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209 (2000) 97 [hep-th/9712241] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [SPIRES].

  45. R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multi-instanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [SPIRES].

  48. T. Tjin, Finite W algebras, Phys. Lett. B 292 (1992) 60 [hep-th/9203077] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. J. de Boer and T. Tjin, Quantization and representation theory of finite W algebras, Commun. Math. Phys. 158 (1993) 485 [hep-th/9211109] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  50. A. De Sole and V. Kac, Finite vs. affine \( \mathcal{W} \) -algebras, Japan. J. Math. 1 (2006) 137 [math-ph/0511055] [SPIRES].

    Article  MATH  Google Scholar 

  51. H. Awata and Y. Yamada, Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. K. Maruyoshi and M. Taki, Deformed Prepotential, Quantum Integrable System and Liouville Field Theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [SPIRES].

  54. A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: the Case of SU(N), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. N. Nekrasov and E. Witten, The Omega Deformation, Branes, Integrability and Liouville Theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. J. Teschner, Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence I, arXiv:1005.2846 [SPIRES].

  57. D. Gaiotto, Surface Operators in N = 24d Gauge Theories, arXiv:0911.1316 [SPIRES].

  58. A. Marshakov, A. Mironov and A. Morozov, On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles, Teor. Mat. Fiz. 164 (2010) 3 [arXiv:1011.4491] [SPIRES].

    Google Scholar 

  59. A. Mironov and A. Morozov, The Power of Nekrasov Functions, Phys. Lett. B 680 (2009) 188 [arXiv:0908.2190] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  60. A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. V.A. Fateev and A.V. Litvinov, On differential equation on four-point correlation function in the conformal Toda field theory, JETP Lett. 81 (2005) 594 [hep-th/0505120] [SPIRES].

    Article  ADS  Google Scholar 

  62. V.A. Fateev and A.V. Litvinov, Correlation functions in conformal Toda field theory I, JHEP 11 (2007) 002 [arXiv:0709.3806] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. V.A. Fateev and A.V. Litvinov, On AGT conjecture, JHEP 02 (2010) 014 [arXiv:0912.0504] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  64. Y. Yamada, A quantum isomonodromy equation and its application to N = 2 SU(N) gauge theories, J. Phys. A 44 (2011) 055403 [arXiv:1011.0292] [SPIRES].

    ADS  Google Scholar 

Download references

Authors

Additional information

ArXiv ePrint: 1012.1355

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyllard, N. Instanton partition functions in \( \mathcal{N} = 2 \) SU(N) gauge theories with a general surface operator, and their \( \mathcal{W} \)-algebra duals. J. High Energ. Phys. 2011, 114 (2011). https://doi.org/10.1007/JHEP02(2011)114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)114

Keywords

Navigation