Skip to main content
Log in

Charged lepton flavour violating radiative decays ℓ i → ℓ j + γ in see-saw models with A 4 symmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The charged lepton flavour violating (LFV) radiative decays, μ → e + γ, τ → μ + γ and τ → e + γ are investigated in a class of supersymmetric A 4 models with three heavy right-handed (RH) Majorana neutrinos, in which the lepton (neutrino) mixing is predicted to leading order (LO) to be tri-bimaximal. The light neutrino masses are generated via the type I see-saw mechanism. The analysis is done within the framework of the minimal supergravity (mSUGRA) scenario, which provides flavour universal boundary conditions at the scale of grand unification M X ≈ 2 × 1016 GeV. Detailed predictions for the rates of the three LFV decays are obtained in two explicit realisations of the A4 models due to Altarelli and Feruglio and Altarelli and Meloni, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  2. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  3. P.F. Harrison and W.G. Scott, Symmetries and generalisations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [SPIRES].

    ADS  Google Scholar 

  4. Z.-Z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [SPIRES].

    ADS  Google Scholar 

  5. P.F. Harrison and W.G. Scott, μ-τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [SPIRES].

    ADS  Google Scholar 

  6. P.F. Harrison and W.G. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S 3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. P.F. Harrison and W.G. Scott, Status of tri-/bi-maximal neutrino mixing, hep-ph/0402006 [SPIRES].

  8. P.F. Harrison and W.G. Scott, The simplest neutrino mass matrix, Phys. Lett. B 594 (2004) 324 [hep-ph/0403278] [SPIRES].

    ADS  Google Scholar 

  9. S.M. Bilenky, J. Hosek and S.T. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [SPIRES].

    ADS  Google Scholar 

  10. S.M. Bilenky, S. Pascoli and S.T. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. I: the three-neutrino mixing case, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265] [SPIRES].

    ADS  Google Scholar 

  11. S.T. Petcov, Towards complete neutrino mixing matrix and CP-violation, Nucl. Phys. (Proc. Suppl.) 143 (2005) 159 [hep-ph/0412410] [SPIRES].

    Article  ADS  Google Scholar 

  12. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].

    ADS  Google Scholar 

  13. K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].

    ADS  Google Scholar 

  14. M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Degenerate neutrinos from a supersymmetric A 4 model, hep-ph/0312244 [SPIRES].

  15. M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [SPIRES].

    ADS  Google Scholar 

  16. S.-L. Chen, M. Frigerio and E. Ma, Hybrid seesaw neutrino masses with A 4 family symmetry, Nucl. Phys. B 724 (2005) 423 [hep-ph/0504181] [SPIRES].

    Article  ADS  Google Scholar 

  17. K.S. Babu and X.-G. He, Model of geometric neutrino mixing, hep-ph/0507217 [SPIRES].

  18. X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavour symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [SPIRES].

    Article  ADS  Google Scholar 

  19. S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [SPIRES].

    ADS  Google Scholar 

  20. F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A 4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].

    Article  ADS  Google Scholar 

  22. Y. Lin, Tri-bimaximal neutrino mixing from A 4 and θ13 ∼ θ C , Nucl. Phys. B 824 (2010) 95 [arXiv:0905.3534] [SPIRES].

    Article  Google Scholar 

  23. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].

    Article  ADS  Google Scholar 

  24. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Altarelli and D. Meloni, A simplest A 4 model for tri-bimaximal neutrino mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [SPIRES].

    ADS  Google Scholar 

  26. C.S. Lam, Determining horizontal symmetry from neutrino mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [SPIRES].

    Article  ADS  Google Scholar 

  27. C.S. Lam, The unique horizontal symmetry of leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [SPIRES].

    ADS  Google Scholar 

  28. F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S4-based model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [SPIRES].

    Article  ADS  Google Scholar 

  29. C.S. Lam, A bottom-up analysis of horizontal symmetry, arXiv:0907.2206 [SPIRES].

  30. H. Ishimori, Y. Shimizu and M. Tanimoto, S4 flavor symmetry of quarks and leptons in SU(5) GUT, Prog. Theor. Phys. 121 (2009) 769 [arXiv:0812.5031] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  31. C. Hagedorn, E. Molinaro and S.T. Petcov, Majorana phases and leptogenesis in see-saw models with A 4 symmetry, JHEP 09 (2009) 115 [arXiv:0908.0240] [SPIRES].

    Article  Google Scholar 

  32. S.T. Petcov, Theoretical prospects of neutrinoless double beta decay, Phys. Scripta T 121 (2005) 94 [hep-ph/0504166] [SPIRES].

    Article  ADS  Google Scholar 

  33. S. Pascoli and S.T. Petcov, Majorana neutrinos, neutrino mass spectrum and the |〈m〉| ∼ 10−3 eV frontier in neutrinoless double beta decay, Phys. Rev. D 77 (2008) 113003 [arXiv:0711.4993] [SPIRES].

    ADS  Google Scholar 

  34. C. Aalseth et al., Neutrinoless double beta decay and direct searches for neutrino mass, hep-ph/0412300 [SPIRES].

  35. E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [SPIRES].

    Article  Google Scholar 

  36. E.E. Jenkins and A.V. Manohar, Tribimaximal mixing, leptogenesis and θ13, Phys. Lett. B 668 (2008) 210 [arXiv:0807.4176] [SPIRES].

    ADS  Google Scholar 

  37. B. Adhikary and A. Ghosal, Nonzero U e3 , CP-violation and leptogenesis in a see-saw type softly broken A 4 symmetric model, Phys. Rev. D 78 (2008) 073007 [arXiv:0803.3582] [SPIRES].

    ADS  Google Scholar 

  38. G.C. Branco, R. Gonzalez Felipe, M.N. Rebelo and H. Serodio, Resonant leptogenesis and tribimaximal leptonic mixing with A 4 symmetry, Phys. Rev. D 79 (2009) 093008 [arXiv:0904.3076] [SPIRES].

    ADS  Google Scholar 

  39. D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-bimaximal lepton mixing and leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [SPIRES].

    Article  Google Scholar 

  40. WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

    Article  ADS  Google Scholar 

  41. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in models with A 4 flavour symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [SPIRES].

    Article  ADS  Google Scholar 

  42. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Theory of the neutrino mass, arXiv:0808.0812 [SPIRES].

  43. S.T. Petcov, The processes μ → eγ, μ → eeē, ν΄→ νγ in the Weinberg-Salam model with neutrino mixing, Sov. J. Nucl. Phys. 25 (1977) 340 [Yad. Fiz. 25 (1977) 641] [Erratum ibid. 25 (698) 1977] [Erratum ibid. 25 (1977) 1336] [SPIRES].

    Google Scholar 

  44. S.M. Bilenky, S.T. Petcov and B. Pontecorvo, Lepton mixing, μ → e + γ decay and neutrino oscillations, Phys. Lett. B 67 (1977) 309 [SPIRES].

    ADS  Google Scholar 

  45. T.P. Cheng and L.-F. Li, μ → eγ in theories with Dirac and Majorana neutrino mass terms, Phys. Rev. Lett. 45 (1980) 1908 [SPIRES].

    Article  ADS  Google Scholar 

  46. M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [SPIRES].

    Article  ADS  Google Scholar 

  47. S.M. Bilenky and S.T. Petcov, Massive neutrinos and neutrino oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 60 (1988) 575] [Erratum ibid. 61 (1989) 169] [SPIRES].

    Article  ADS  Google Scholar 

  48. F. Feruglio, C. Hagedorn and L. Merlo, Vacuum alignment in SUSY A 4 models, arXiv:0910.4058 [SPIRES].

  49. F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].

    Article  ADS  Google Scholar 

  50. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [SPIRES].

    ADS  Google Scholar 

  51. J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].

    ADS  Google Scholar 

  52. S.T. Petcov, S. Profumo, Y. Takanishi and C.E. Yaguna, Charged lepton flavor violating decays: leading logarithmic approximation versus full RG results, Nucl. Phys. B 676 (2004) 453 [hep-ph/0306195] [SPIRES].

    Article  ADS  Google Scholar 

  53. S.T. Petcov, W. Rodejohann, T. Shindou and Y. Takanishi, The see-saw mechanism, neutrino Yukawa couplings, LFV decays i → ℓj + γ and leptogenesis, Nucl. Phys. B 739 (2006) 208 [hep-ph/0510404] [SPIRES].

    Article  ADS  Google Scholar 

  54. V. Barger, D. Marfatia, A. Mustafayev and A. Soleimani, SUSY dark matter and lepton flavor violation, Phys. Rev. D 80 (2009) 076004 [arXiv:0908.0941] [SPIRES].

    Google Scholar 

  55. Z.-Z. Xing, H. Zhang and S. Zhou, Updated values of running quark and lepton masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [SPIRES].

    ADS  Google Scholar 

  56. ALEPH collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [SPIRES].

    Article  ADS  Google Scholar 

  57. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  58. P.H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino masses, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333] [SPIRES].

    ADS  Google Scholar 

  59. K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223] [SPIRES].

    ADS  Google Scholar 

  60. S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [SPIRES].

    ADS  Google Scholar 

  61. S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization in two Higgs doublet models and the MSSM, Phys. Lett. B 525 (2002) 130 [hep-ph/0110366] [SPIRES].

    ADS  Google Scholar 

  62. S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [SPIRES].

    Article  ADS  Google Scholar 

  63. S.T. Petcov, T. Shindou and Y. Takanishi, Majorana CP-violating phases, RG running of neutrino mixing parameters and charged lepton flavour violating decays, Nucl. Phys. B 738 (2006) 219 [hep-ph/0508243] [SPIRES].

    Article  ADS  Google Scholar 

  64. H. Baer, C. Balázs, A. Belyaev, T. Krupovnickas and X. Tata, Updated reach of the CERN LHC and constraints from relic density, bsγ and a(μ) in the mSUGRA model, JHEP 06 (2003) 054 [hep-ph/0304303] [SPIRES].

    Article  ADS  Google Scholar 

  65. J.R. Ellis, K.A. Olive, Y. Santoso and V.C. Spanos, Supersymmetric dark matter in light of WMAP, Phys. Lett. B 565 (2003) 176 [hep-ph/0303043] [SPIRES].

    ADS  Google Scholar 

  66. H. Baer and A.D. Box, Fine-tuning favors mixed axion/axino cold dark matter over neutralinos in the minimal supergravity model, arXiv:0910.0333 [SPIRES].

  67. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \overline p p \) and e + e reactions, hep-ph/0312045 [SPIRES].

  68. V. Barger, D. Marfatia and A. Mustafayev, Neutrino sector impacts SUSY dark matter, Phys. Lett. B 665 (2008) 242 [arXiv:0804.3601] [SPIRES].

    ADS  Google Scholar 

  69. MEGA collaboration, M.L. Brooks et al., New limit for the family-number non-conserving decay μ+e ±γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].

    Article  ADS  Google Scholar 

  70. A. Maki, Status of the MEG experiment, AIP Conf. Proc. 981 (2008) 363 [SPIRES].

    Article  ADS  Google Scholar 

  71. BABAR collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ → eγ and τ → μγ, arXiv:0908.2381 [SPIRES].

  72. M. Bona et al., SuperB: a high-luminosity asymmetric e + e super flavor factory. Conceptual design report, arXiv:0709.0451 [SPIRES].

  73. SuperKEKB Physics Working Group collaboration, A.G. Akeroyd et al., Physics at super B factory, hep-ex/0406071 [SPIRES].

  74. GERDA collaboration, A.A. Smolnikov, Status of the GERDA experiment aimed to search for neutrinoless double beta decay of 76Ge, arXiv:0812.4194 [SPIRES].

  75. CUORE collaboration, A. Giuliani, From Cuoricino to CUORE: investigating the inverted hierarchy region of neutrino mass, J. Phys. Conf. Ser. 120 (2008) 052051 [SPIRES].

    Article  ADS  Google Scholar 

  76. G.L. Fogli et al., Observables sensitive to absolute neutrino masses (Addendum), Phys. Rev. D 78 (2008) 033010 [arXiv:0805.2517] [SPIRES].

    ADS  Google Scholar 

  77. M. Tegmark, Cosmological neutrino bounds for non-cosmologists, Phys. Scripta T 121 (2005) 153 [hep-ph/0503257] [SPIRES].

    Article  ADS  Google Scholar 

  78. S. Hannestad, H. Tu and Y.Y.Y. Wong, Measuring neutrino masses and dark energy with weak lensing tomography, JCAP 06 (2006) 025 [astro-ph/0603019] [SPIRES].

    ADS  Google Scholar 

  79. J. Lesgourgues, L. Perotto, S. Pastor and M. Piat, Probing neutrino masses with CMB lensing extraction, Phys. Rev. D 73 (2006) 045021 [astro-ph/0511735] [SPIRES].

    ADS  Google Scholar 

  80. PRIME Working Group collaboration, Y. Mori et al., An experimental search for μe conversion process at an ultimate sensitivity of the order of 10−18 with PRISM, LOI-25, J-PARC, Japan (2006).

  81. Mu2e collaboration, E.C. Dukes et al., Proposal to search for μN → e N with a single event sensitivity below 10−16, FERMILAB-PROPOSAL-0973 [SPIRES].

  82. SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ+e + e + e , Nucl. Phys. B 299 (1988) 1 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hagedorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagedorn, C., Molinaro, E. & Petcov, S.T. Charged lepton flavour violating radiative decays ℓ i → ℓ j + γ in see-saw models with A 4 symmetry. J. High Energ. Phys. 2010, 47 (2010). https://doi.org/10.1007/JHEP02(2010)047

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)047

Keywords

Navigation