Skip to main content
Log in

Matrix model conjecture for exact BS periods and Nekrasov functions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We give a concise summary of the impressive recent development unifying a number of different fundamental subjects. The quiver Nekrasov functions (generalized hypergeometric series) form a full basis for all conformal blocks of the Virasoro algebra and are sufficient to provide the same for some (special) conformal blocks of W-algebras. They can be described in terms of Seiberg-Witten theory, with the SW differential given by the 1-point resolvent in the DV phase of the quiver (discrete or conformal) matrix model (β-ensemble), \( dS = ydz + O\left( {{\varepsilon^2}} \right) = \sum\nolimits_p {{\varepsilon^{2p}}\rho_\beta^{\left( {p\left| 1 \right.} \right)}(z)} \), where ε and β are related to the LNS parameters ϵ1 and ϵ2. This provides explicit formulas for conformal blocks in terms of analytically continued contour integrals and resolves the old puzzle of the free-field description of generic conformal blocks through the Dotsenko-Fateev integrals. Most important, this completes the GKMMM description of SW theory in terms of integrability theory with the help of exact BS integrals, and provides an extended manifestation of the basic principle which states that the effective actions are the tau-functions of integrable hierarchies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B430 (1994) 485] [hep-th/9407087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. E.J. Martinec and N.P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459 (1996) 97 [hep-th/9509161] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Hanany and Y. Oz, On the quantum moduli space of vacua of N = 2 supersymmetric SU(N c ) gauge theories, Nucl. Phys. B 452 (1995) 283 [hep-th/9505075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. P.Argyres and A.Shapere, The vacuum structure of N=2 superQCD with classical gauge groups, Nucl. Phys. B 461 (1996) 437 [hep-th/9509175] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. J.Sonnenschein, S.Theisen and S.Yankielowicz, On the relation between the holomorphic prepotential and the quantum moduli in SUSY gauge theories, Phys. Lett. B 367 (1996) 145 [hep-th/9510129] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. J.Minahan and D.Nemeschansky, N=2 superYang-Mills and subgroups of SL(2, Z), Nucl. Phys. B 468 (1996) 72 [hep-th/9601059] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. N.Dorey, V.Khoze and M.Mattis, Multi instanton calculus in N=2 supersymmetric gauge theory. 2. Coupling to matter, Phys. Rev. D 54 (1996) 7832 [hep-th/9607202] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. N. Dorey, V.V. Khoze and M.P. Mattis, On N = 2 supersymmetric QCD with 4 flavors, Nucl. Phys. B 492 (1997) 607 [hep-th/9611016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. E.Martinec, Integrable structures in supersymmetric gauge and string theory, Phys. Lett. B 367 (1996) 91 [hep-th/9510204] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. A.Gorsky, A.Marshakov, Towards effective topological gauge theories on spectral curves, Phys. Lett. B 374 (1996) 218 [hep-th/9510224] [SPIRES].

    Google Scholar 

  14. H.Itoyama and A.Morozov, Integrability and Seiberg-Witten theory: Curves and periods, Nucl. Phys. B 477 (1996) 855 [hep-th/9511126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. H. Itoyama and A. Morozov, Prepotential and the Seiberg-Witten theory, Nucl. Phys. B 491 (1997) 529 [hep-th/9512161] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Itoyama and A. Morozov, Integrability and Seiberg-Witten theory, hep-th/9601168 [SPIRES].

  17. N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. H.W. Braden, A.Marshakov, A.Mironov and A.Morozov, Seiberg-Witten theory for a nontrivial compactification from five-dimensions to four-dimensions, Phys. Lett. B 448 (1999) 195 [hep-th/9812078] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, The Ruijsenaars-Schneider model in the context of Seiberg-Witten theory, Nucl. Phys. B 558 (1999) 371 [hep-th/9902205] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, WDVV equations for 6D Seiberg-Witten theory and bi-elliptic curves, hep-th/0606035 [SPIRES].

  21. A. Gorsky, A. Marshakov, A. Mironov and A. Morozov, N = 2 supersymmetric QCD and integrable spin chains: rational case N f < 2N c , Phys. Lett. B 380 (1996) 75 [hep-th/9603140] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. A. Gorsky, A. Marshakov, A. Mironov and A. Morozov, A note on spectral curve for the periodic homogeneous XYZ-spin chain, hep-th/9604078 [SPIRES].

  23. A.Gorsky, S.Gukov and A.Mironov, Multiscale N = 2 SUSY field theories, integrable systems and their stringy/brane origin. 1, Nucl. Phys. B 517 (1998) 409 [hep-th/9707120] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. A.Gorsky and A.Mironov, Integrable many body systems and gauge theories, [hep-th/0011197] [SPIRES].

  25. E. D’Hoker, I.M. Krichever and D.H. Phong, The effective prepotential of N = 2 supersymmetric SU(N c ) gauge theories, Nucl. Phys. B 489 (1997) 179 [hep-th/9609041] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. E. D’Hoker, I.M. Krichever and D.H. Phong, The renormalization group equation in N = 2 supersymmetric gauge theories, Nucl. Phys. B 494 (1997) 89 [hep-th/9610156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. A.Gorsky, A.Marshakov, A.Mironov and A.Morozov, RG equations from Whitham hierarchy, Nucl. Phys. B 527 (1998) 690 [hep-th/9802007] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. J.Edelstein, M.Gomez-Reino, M.Marino and J.Mas, N=2 supersymmetric gauge theories with massive hypermultiplets and the Whitham hierarchy, Nucl. Phys. B 574 (2000) 587 [hep-th/9911115] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. J.Edelstein, M.Gomez-Reino and J.Mas, Instanton corrections in N=2 supersymmetric theories with classical gauge groups and fundamental matter hypermultiplets, Nucl. Phys. B 561 (1999) 273 [hep-th/9904087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. A.Marshakov, Seiberg-Witten theory and integrable systems, World Scientific, Singapore (1999).

    MATH  Google Scholar 

  31. A. Losev, N. Nekrasov and S.L. Shatashvili, Issues in topological gauge theory, Nucl. Phys. B 534 (1998) 549 [hep-th/9711108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [SPIRES].

  33. A. Lossev, N. Nekrasov and S.L. Shatashvili, Testing Seiberg-Witten solution, hep-th/9801061 [SPIRES].

  34. G.W. Moore, N. Nekrasov and S. Shatashvili, D-particle bound states and generalized instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The calculus of many instantons, Phys. Rept. 371 (2002) 231 [hep-th/0206063] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192–193 (2009) 91 [arXiv:0901.4744] [SPIRES].

    Article  Google Scholar 

  37. N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  38. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

  39. R.Flume and R.Pogossian, An Algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [SPIRES].

    ADS  Google Scholar 

  40. H. Nakajima and K. Yoshioka, Instanton counting on blowup. I, math/0306198 [SPIRES].

  41. H. Nakajima, K. Yoshioka, Lectures on instanton counting, math/0311058 [SPIRES].

  42. S.Shadchin, Status report on the instanton counting, SIGMA 2 (2006) 008 [hep-th/0601167] [SPIRES].

    MathSciNet  Google Scholar 

  43. S. Shadchin, On certain aspects of string theory/gauge theory correspondence, hep-th/0502180 [SPIRES].

  44. D. Bellisai, F. Fucito, A. Tanzini and G. Travaglini, Multi-instantons, supersymmetry and topological field theories, Phys. Lett. B 480 (2000) 365 [hep-th/0002110] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. U.Bruzzo, F.Fucito, A.Tanzini, G.Travaglini, On the multi - instanton measure for superYang-Mills theories, Nucl. Phys. B 611 (2001) 205 [hep-th/0008225] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. U.Bruzzo, F.Fucito, J.Morales and A.Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. U.Bruzzo and F.Fucito, Superlocalization formulas and supersymmetric Yang-Mills theories, Nucl. Phys. B 678 (2004) 638 [math-ph/0310036] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [SPIRES].

  49. F.Fucito, J.Morales and R.Pogossian, Instantons on quivers and orientifolds, JHEP 10 (2004) 037 [hep-th/040890] [SPIRES].

    Article  ADS  Google Scholar 

  50. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, arXiv:0906.3219 [SPIRES].

  51. N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].

    Article  Google Scholar 

  52. N.Drukker, D.Morrison and T.Okuda, Loop operators and S-duality from curves on Riemann surfaces JHEP 09 (2009) 031 [arXiv:0907.2593] [SPIRES].

    Article  Google Scholar 

  53. A. Marshakov, A. Mironov and A. Morozov, On combinatorial expansions of conformal blocks, arXiv:0907.3946 [SPIRES].

  54. A. Mironov, S. Mironov, A. Morozov and A. Morozov, CFT exercises for the needs of AGT, arXiv:0908.2064 [SPIRES].

  55. A.Mironov and A.Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2009) 1 [arXiv:0908.2569] [SPIRES].

    MathSciNet  Google Scholar 

  56. S.Iguri and C.Nunez, Coulomb integrals and conformal blocks in the AdS 3 - WZNW model, JHEP 11 (2009) 090 [arXiv:0908.3460] [SPIRES].

    Article  Google Scholar 

  57. A. Mironov, S. Mironov, A. Morozov and A. Morozov, CFT exercises for the needs of AGT, arXiv:0908.2064 [SPIRES].

  58. D. Nanopoulos and D. Xie, Hitchin equation, singularity and N = 2 superconformal field theories, arXiv:0911.1990 [SPIRES].

  59. L.Alday, D.Gaiotto, S.Gukov, Y.Tachikawa and H.Verlinde, Loop and surface operators in N=2 gauge theory and Liouville modular geometry, arXiv:0909.0945 [SPIRES].

  60. N.Drukker, J.Gomis, T.Okuda and J.Teschner, Gauge theory loop operators and Liouville theory, arXiv:0909.1105 [SPIRES].

  61. A.Gadde, E.Pomoni, L.Rastelli and S.Razamat, S-duality and 2d Topological QFT, arXiv:0910.2225 [SPIRES].

  62. G.Bonelli and A.Tanzini, Hitchin systems, N=2 gauge theories and W-gravity, arXiv:0909.4031 [SPIRES].

  63. L.Alday, F.Benini and Y.Tachikawa, Liouville/Toda central charges from M5-branes, arXiv:0909.4776 [SPIRES].

  64. Jian-Feng Wu and Yang Zhou, From Liouville to Chern-Simons, alternative realization of Wilson loop operators in AGT duality., arXiv:0911.1922 [SPIRES].

  65. A. Mironov and A. Morozov, The power of Nekrasov functions, Phys. Lett. B 680 (2009) 188 [arXiv:0908.2190] [SPIRES].

    Google Scholar 

  66. R. Dijkgraaf and C. Vafa, Toda theories, matrix models, topological strings and N = 2 gauge systems, arXiv:0909.2453 [SPIRES].

  67. D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [SPIRES].

  68. A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [SPIRES].

    Google Scholar 

  69. H. Awata and Y. Yamada, Five-dimensional AGT conjecture and the deformed Virasoro algebra, arXiv:0910.4431 [SPIRES].

  70. V. Alba and A. Morozov, Non-conformal limit of AGT relation from the 1-point torus conformal block, arXiv:0911.0363 [SPIRES].

  71. A. Marshakov, A. Mironov and A. Morozov, Zamolodchikov asymptotic formula and instanton expansion in N = 2 SUSY N f = 2N c QCD, JHEP 11 (2009) 048 [arXiv:0909.3338] [SPIRES].

    Article  Google Scholar 

  72. R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038 arXiv:0909.3412 [SPIRES].

    Article  Google Scholar 

  73. L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, arXiv:0911.2353 [SPIRES].

  74. A. Mironov and A. Morozov, Proving AGT relations in the large-c limit, Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531] [SPIRES].

    Google Scholar 

  75. H. Itoyama, K. Maruyoshi and T. Oota, Notes on the quiver matrix model and 2d- 4D conformal connection, arXiv:0911.4244 [SPIRES].

  76. T. Eguchi and K. Maruyoshi, Penner type matrix model and Seiberg-Witten theory, arXiv:0911.4797 [SPIRES].

  77. S. Kanno, Y. Matsuo, S. Shiba and Y. Tachikawa, N = 2 gauge theories and degenerate fields of Toda theory, arXiv:0911.4787 [SPIRES].

  78. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  79. A. Zamolodchikov and Al. Zamolodchikov, Conformal field theory and critical phenomena in 2d systems (in Russian) (2009).

  80. V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B 240 (1984) 312 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  81. A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov and S.L. Shatashvili, Wess-Zumino-Witten model as a theory of free fields, Int. J. Mod. Phys. A 5 (1990) 2495 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  82. A. Gerasimov, A. Marshakov and A. Morozov, Free field representation of parafermions and related coset models, Nucl. Phys. B 328 (1989) 664 [Theor. Math. Phys. 83 (1990) 466] [Teor. Mat. Fiz. 83 (1990) 186] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  83. Al.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  84. Al.B. Zamolodchikov, Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, JETP 63 (1986) 1061.

    MathSciNet  Google Scholar 

  85. Al.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.

    Article  MathSciNet  Google Scholar 

  86. Al.B. Zamolodchikov, Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions, Nucl. Phys. B 285 (1987) 481 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  87. V.A. Fateev, A.V. Litvinov, A. Neveu and E. Onofri, Differential equation for four-point correlation function in Liouville field theory and elliptic four-point conformal blocks, J. Phys. A 42 (2009) 304011 [arXiv:0902.1331] [SPIRES].

    Article  MathSciNet  Google Scholar 

  88. A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov and A. Orlov, Matrix models of 2-D gravity and Toda theory, Nucl. Phys. B 357 (1991) 565 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  89. A. Mironov and A. Morozov, On the origin of Virasoro constraints in matrix models: Lagrangian approach, Phys. Lett. B 252 (1990) 47 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  90. F. David, Loop equations and nonperturbative effects in two-dimensional quantum gravity, Mod. Phys. Lett. A 5 (1990) 1019 [SPIRES].

    ADS  Google Scholar 

  91. J. Ambjorn and Yu. Makeenko, Properties of loop equations for the Hermitean matrix model and for two-dimensional quantum gravity, Mod. Phys. Lett. A 5 (1990) 1753 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  92. H. Itoyama and Y. Matsuo, Noncritical Virasoro algebra of d < 1 matrix model and quantized string field, Phys. Lett. B 255 (1991) 202 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  93. A. Marshakov, A. Mironov and A. Morozov, From Virasoro constraints in Kontsevich’s model to W constraints in two matrix model, Mod. Phys. Lett. A 7 (1992) 1345 [hep-th/9201010] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  94. Y. Makeenko, A. Marshakov, A. Mironov and A. Morozov, Continuum versus discrete Virasoro in one matrix models, Nucl. Phys. B 356 (1991) 574 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  95. M. Kontsevich, Theory of intersections on the moduli space of curves, Funk. Anal. Prilozh. 25(2) (1991) 50.

    MathSciNet  Google Scholar 

  96. M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys. 147 (1992) 1 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  97. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and A. Zabrodin, Unification of all string models with C < 1, Phys. Lett. B 275 (1992) 311 [hep-th/9111037] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  98. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and A. Zabrodin, Towards unified theory of 2 − D gravity, Nucl. Phys. B 380 (1992) 181 [hep-th/9201013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  99. S. Kharchev, A. Marshakov, A. Mironov and A. Morozov, Generalized Kontsevich model versus Toda hierarchy and discrete matrix models, Nucl. Phys. B 397 (1993) 339 [hep-th/9203043] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  100. P. Di Francesco, C. Itzykson and J.-B. Zuber, Polynomial averages in the Kontsevich model, Comm. Math. Phys. 151 (1993) 193 [hep-th/9206090] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  101. A. Marshakov, A. Mironov and A. Morozov, Generalized matrix models as conformal field theories: discrete case, Phys. Lett. B 265 (1991) 99 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  102. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and S. Pakuliak, Conformal matrix models as an alternative to conventional multimatrix models, Nucl. Phys. B 404 (1993) 717 [hep-th/9208044] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  103. S. Kharchev, A. Marshakov, A. Mironov and A. Morozov, Generalized Kazakov-Migdal-Kontsevich model: group theory aspects, Int. J. Mod. Phys. A 10 (1995) 2015 [hep-th/9312210] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  104. A. Marshakov and N. Nekrasov, Extended Seiberg-Witten theory and integrable hierarchy, JHEP 01 (2007) 104 [hep-th/0612019] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  105. A. Marshakov, On microscopic origin of integrability in Seiberg-Witten theory, Theor. Math. Phys. 154 (2008) 362 [arXiv:0706.2857] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  106. A. Marshakov, Non Abelian gauge theories, prepotentials and Abelian differentials, arXiv:0810.1536 [SPIRES].

  107. B. Eynard, All order asymptotic expansion of large partitions, J. Stat. Mech. (2008) P07023 [arXiv:0804.0381] [SPIRES].

  108. I.K. Kostov, Gauge invariant matrix model for the A-D-E closed strings, Phys. Lett. B 297 (1992) 74 [hep-th/9208053] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  109. I.K. Kostov, Solvable statistical models on a random lattice, Nucl. Phys. Proc. Suppl. 45A (1996) 13 [hep-th/9509124] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  110. A. Morozov, String theory: what is it?, Phys. Usp. 35 (1992) 671.

    Article  ADS  Google Scholar 

  111. A. Morozov, Integrability and matrix models, Phys. Usp. 37 (1994) 1 [hep-th/9303139] [SPIRES].

    Article  ADS  Google Scholar 

  112. A. Morozov, Matrix models as integrable systems, hep-th/9502091 [SPIRES].

  113. A. Morozov, Challenges of matrix models, hep-th/0502010 [SPIRES].

  114. A. Mironov, 2-d gravity and matrix models. 1. 2-d gravity., Int. J. Mod. Phys. A 9 (1994) 4355 [hep-th/9312212] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  115. A. Mironov, Quantum deformations of tau functions, bilinear identities and representation theory, hep-th/9409190 [SPIRES].

  116. A. Mironov, τ-function within group theory approach and its quantization, Theor. Math. Phys. 114 (1998) 127 [q-alg/9711006].

    Article  MATH  MathSciNet  Google Scholar 

  117. A.S. Alexandrov, A. Mironov and A. Morozov, Partition functions of matrix models as the first special functions of string theory. I: Finite size Hermitean 1-matrix model, Int. J. Mod. Phys. A 19 (2004) 4127 [Teor. Mat. Fiz. 142 (2005) 419] [hep-th/0310113] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  118. A.S. Alexandrov, A.D. Mironov and A.Yu. Morozov, Partition functions of matrix models as the first special functions of string theory: Finite Hermitian one-matrix model., Theor. Math. Phys. 142 (2005) 349 [SPIRES].

    Article  MATH  Google Scholar 

  119. A. Morozov and Sh. Shakirov, Exact 2-point function in Hermitian matrix model, JHEP 12 (2009) 003 [arXiv:0906.0036] [SPIRES].

    Article  Google Scholar 

  120. A.S. Alexandrov, A. Mironov, A. Morozov and P. Putrov, Partition functions of matrix models as the first special functions of string theory. II. Kontsevich Model, Int. J. Mod. Phys. A 24 (2009) 4939 [arXiv:0811.2825] [SPIRES].

    Google Scholar 

  121. A.S. Alexandrov, A. Mironov and A. Morozov, Solving Virasoro constraints in matrix models, Fortsch. Phys. 53 (2005) 512 [hep-th/0412205] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  122. A. Givental, Semisimple Frobenius structures at higher genus, math.AG/0008067.

  123. I.K. Kostov, Conformal field theory techniques in random matrix models, hep-th/9907060 [SPIRES].

  124. A. Alexandrov, A. Mironov and A. Morozov, M-theory of matrix models, Teor. Mat. Fiz. 150 (2007) 179 [hep-th/0605171] [SPIRES].

    Google Scholar 

  125. A.S. Alexandrov, A. Mironov and A. Morozov, Instantons and merons in matrix models, Physica D 235 (2007) 126 [hep-th/0608228] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  126. A. Alexandrov, A. Mironov and A. Morozov, BGWM as second constituent of complex matrix model., JHEP 12 (2009) 053 [arXiv:0906.3305] [SPIRES].

    Article  Google Scholar 

  127. A. Mironov, Matrix models vs. matrix integrals, Theor. Math. Phys. 146 (2006) 63 [Teor. Mat. Fiz. 146 (2006) 77] [hep-th/0506158] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  128. N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv:0808.0635 [SPIRES].

  129. A. Klemm and P. Sulkowski, Seiberg-Witten theory and matrix models, Nucl. Phys. B 819 (2009) 400 [arXiv:0810.4944] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  130. P. Sulkowski, Matrix models for 2* theories., Phys. Rev. D 80 (2009) 086006 arXiv:0904.3064 [SPIRES].

    Google Scholar 

  131. F. Cachazo, K.A. Intriligator and C. Vafa, A large-N duality via a geometric transition, Nucl. Phys. B 603 (2001) 3 [hep-th/0103067] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  132. F. Cachazo and C. Vafa, N = 1 and N = 2 geometry from fluxes, hep-th/0206017 [SPIRES].

  133. R. Dijkgraaf and C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories, Nucl. Phys. B 644 (2002) 3 [hep-th/0206255] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  134. R. Dijkgraaf and C. Vafa, On geometry and matrix models, Nucl. Phys. B 644 (2002) 21 [hep-th/0207106] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  135. R. Dijkgraaf and C. Vafa, A perturbative window into non-perturbative physics, hep-th/0208048 [SPIRES].

  136. L. Chekhov and A. Mironov, Matrix models versus Seiberg-Witten/Whitham theories., Phys. Lett. B 552 (2003) 293 [hep-th/0209085] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  137. H. Itoyama and A. Morozov, The Dijkgraaf-Vafa prepotential in the context of general Seiberg-Witten theory, Nucl. Phys. B 657 (2003) 53 [hep-th/0211245] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  138. H. Itoyama and A. Morozov, Experiments with the WDVV equations for the gluino-condensate prepotential: The cubic (two-cut) case, Phys. Lett. B 555 (2003) 287 [hep-th/0211259] [SPIRES].

    ADS  Google Scholar 

  139. H. Itoyama and A. Morozov, Calculating gluino condensate prepotential, Prog. Theor. Phys. 109 (2003) 433 [hep-th/0212032] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  140. L. Chekhov, A. Marshakov, A. Mironov and D. Vasiliev, DV and WDVV, Phys. Lett. B 562 (2003) 323 [hep-th/0301071] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  141. L. Chekhov, A. Marshakov, A. Mironov and D. Vasiliev, Complex geometry of matrix models, Proc. Steklov Inst. Math. 251 (2005) 254 [hep-th/0506075] [SPIRES].

    Google Scholar 

  142. H. Itoyama and A. Morozov, Gluino-condensate (CIV-DV) prepotential from its Whithamtime derivatives, Int. J. Mod. Phys. A 18 (2003) 5889 [hep-th/0301136] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  143. A. Klemm, M. Mariño and S. Theisen, Gravitational corrections in supersymmetric gauge theory and matrix models, JHEP 03 (2003) 051 [hep-th/0211216] [SPIRES].

    Article  ADS  Google Scholar 

  144. M. Matone and L. Mazzucato, Branched matrix models and the scales of supersymmetric gauge theories, JHEP 07 (2003) 015 [hep-th/0305225] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  145. R. Argurio, G. Ferretti and R. Heise, An introduction to supersymmetric gauge theories and matrix models, Int. J. Mod. Phys. A 19 (2004) 2015 [hep-th/0311066] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  146. M. Gomez-Reino, Exact superpotentials, theories with flavor and confining vacua, JHEP 06 (2004) 051 [hep-th/0405242] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  147. H. Itoyama and H. Kanno, Whitham prepotential and superpotential, Nucl. Phys. B 686 (2004) 155 [hep-th/0312306] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  148. H. Itoyama, K. Maruyoshi and M. Sakaguchi, N = 2 quiver gauge model and partial supersymmetry breaking, Nucl. Phys. B 794 (2008) 216 [arXiv:0709.3166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  149. N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [SPIRES].

  150. A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Zommerfeld integrals, arXiv:0910.5670 [SPIRES].

  151. A. Mironov and A. Morozov, Nekrasov functions from exact BS periods: the case of SU(N), arXiv:0911.2396 [SPIRES].

  152. M. Semenov-Tyan-Shansky, Izv. RAN ser. Phys. 40 (1976) 562.

    MATH  Google Scholar 

  153. J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Inv. Math. 72 (1983) 153.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  154. M. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  155. M.F. Atiyah, Circular symmetry and stationary phase approximation, Asterisque 131 (1985) 43.

    MathSciNet  Google Scholar 

  156. E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  157. E. Witten, Introduction to cohomological field theories, Int. J. Mod. Phys. A 6 (1991) 2775 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  158. A. Alekseev, L. Faddeev and S. Shatashvili, Quantization of symplectic orbits of compact Lie groups by means of the functional integral, J. Geom. Phys. 1 (1989) 3.

    Google Scholar 

  159. M. Blau, E. Keski-Vakkuri and A. Niemi, Path integrals and geometry of trajectories., Phys. Lett. B 246 (1990) 92 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  160. A. Hietamaki, A. Morozov, A. Niemi and K. Palo, Geometry of N = 1/2 supersymmetry and the Atiyah-Singer index theorem, Phys. Lett. B 263 (1991) 417 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  161. A.Y. Morozov, A.J. Niemi and K. Palo, Supersymmetry and loop space geometry, Phys. Lett. B 271 (1991) 365 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  162. A.Y. Morozov, A. Niemi and K. Palo, Supersymplectic geometry of supersymmetric quantum field theories, Nucl. Phys. B 377 (1992) 295 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  163. A.Y. Morozov, A.J. Niemi and K. Palo, Geometric approach to supersymmetry, Int. J. Mod. Phys. B 6 (1992) 2149 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  164. M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y.I. Manin, Construction of instantons, Phys. Lett. A 65 (1978) 185 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  165. A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  166. A. Morozov, Unitary integrals and related matrix models, arXiv:0906.3518 [SPIRES].

  167. R. Dijkgraaf, The moduli spaces of curves, Brikhauser, Prog. Math. 129 (1995) 149.

    MathSciNet  Google Scholar 

  168. S. Lando and D. Zvonkine, Counting ramified coverings and intersection theory on spaces of rational functions I (Cohomology of Hurwitz spaces), Funk. Anal. Appl. 33 (1999) 178 [math.AG/0303218].

    Article  MATH  MathSciNet  Google Scholar 

  169. A. Givental, Gromov-Witten invariants and quantization of quadratic hamiltonians, math/0108100.

  170. M. Kazarian, KP hierarchy for Hodge integrals, arXiv:0809.3263.

  171. V. Bouchard and M. Marino, Hurwitz numbers, matrix models and enumerative geometry, arXiv:0709.1458 [SPIRES].

  172. A. Mironov and A. Morozov, Virasoro constraints for Kontsevich-Hurwitz partition function, JHEP 02 (2009) 024 [arXiv:0807.2843] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  173. A. Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000) 447.

    MATH  MathSciNet  Google Scholar 

  174. A. Morozov and S. Shakirov, Generation of matrix models by W-operators, JHEP 04 (2009) 064 [arXiv:0902.2627] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  175. A. Morozov and S. Shakirov, On equivalence of two Hurwitz matrix models, Mod. Phys. Lett. A 24 (2009) 2659 [arXiv:0906.2573] [SPIRES].

    Google Scholar 

  176. G. Borot, B. Eynard, M. Mulase and B. Safnuk, A Matrix model for simple Hurwitz numbers, and topological recursion, arXiv:0906.1206 [SPIRES].

  177. A. Mironov, A. Morozov and S. Natanzon, Complete set of cut-and-join operators in Hurwitz-Kontsevich theory, arXiv:0904.4227 [SPIRES].

  178. A. Mironov, A. Morozov and S. Natanzon, Universal algebras of Hurwitz numbers, arXiv:0909.1164 [SPIRES].

  179. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  180. A. Marshakov, M. Martellini and A. Morozov, Insights and puzzles from branes: 4D SUSY Yang-Mills from 6D models, Phys. Lett. B 418 (1998) 294 [hep-th/9706050] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  181. D. Gaiotto, N=2 dualities, arXiv:0904.2715 [SPIRES].

  182. Y. Tachikawa, Six-dimensional D N theory and four-dimensional SO-USp quivers, JHEP 07 (2009) 067 [arXiv:0905.4074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  183. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [SPIRES].

  184. A. Okounkov, Generating functions for intersection numbers on moduli spaces of curves, math.AG/0101201.

  185. P. Di Francesco, M. Gaudin, C. Itzykson and F. Lesage, Laughlin’s wave functions, Coulomb gases and expansions of the discriminant, Int. J. Mod. Phys. A 9 (1994) 4257 [hep-th/9401163] [SPIRES].

    ADS  Google Scholar 

  186. A. Zabrodin, Random matrices and Laplacian growth, arXiv:0907.4929.

  187. C. Itoi, Universal wide correlators in non-Gaussian orthogonal, unitary and symplectic random matrix ensembles, Nucl. Phys. B 493 (1997) 651 [cond-mat/9611214] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  188. A. Marshakov and A. Mironov, 5D and 6D supersymmetric gauge theories: Prepotentials from integrable systems, Nucl. Phys. B 518 (1998) 59 [hep-th/9711156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  189. B. De Wit and G. t’Hooft, Nonconvergence of the 1/N expansion for SU(N) gauge fields on a lattice, Phys. Lett. B 69 (1977) 61 [SPIRES].

    ADS  Google Scholar 

  190. A. Mironov, A. Morozov and G.W. Semenoff, Unitary matrix integrals in the framework of generalized Kontsevich model. 1. Brezin-Gross-Witten model, Int. J. Mod. Phys. A 11 (1996) 5031 [hep-th/9404005] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  191. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  192. T.W. Grimm, A. Klemm, M. Mariño and M. Weiss, Direct integration of the topological string, JHEP 08 (2007) 058 [hep-th/0702187] [SPIRES].

    Article  ADS  Google Scholar 

  193. E.K. Sklyanin, Separation of variables – new trends, Prog. Theor. Phys. Suppl. 118 (1995) 35 [solv-int/9504001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  194. A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov and A. Morozov, Generalized Hirota equations and representation theory. 1. The case of SL(2) and SL q (2), Int. J. Mod. Phys. A 10 (1995) 2589 [hep-th/9405011] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mironov.

Additional information

ArXiv ePrint: 0911.5721

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, A., Morozov, A. & Shakirov, S. Matrix model conjecture for exact BS periods and Nekrasov functions. J. High Energ. Phys. 2010, 30 (2010). https://doi.org/10.1007/JHEP02(2010)030

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)030

Keywords

Navigation