Skip to main content
Log in

Consistent interactions and involution

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Starting from the concept of involution of field equations, a universal method is proposed for constructing consistent interactions between the fields. The method equally well applies to the Lagrangian and non-Lagrangian equations and it is explicitly covariant. No auxiliary fields are introduced. The equations may have (or have no) gauge symmetry and/or second class constraints in Hamiltonian formalism, providing the theory admits a Hamiltonian description. In every case the method identifies all the consistent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, New York U.S.A. (1964).

  2. S. Lyakhovich and A. Sharapov, Normal forms and gauge symmetries of local dynamics, J. Math. Phys. 50 (2009) 083510 [arXiv:0812.4914] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Henneaux, Consistent interactions between gauge fields: the Cohomological approach, Contemp. Math. 219 (1998) 93.

    Article  MathSciNet  Google Scholar 

  4. G. Barnich and M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation, Phys. Lett. B 311 (1993) 123 [hep-th/9304057] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in gauge theories, Phys. Rept. 338 (2000) 439 [hep-th/0002245] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. M. Henneaux and B. Knaepen, All consistent interactions for exterior form gauge fields, Phys. Rev. D 56 (1997) 6076 [hep-th/9706119] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Henneaux, G. Lucena Gomez and R. Rahman, Higher-Spin Fermionic Gauge Fields and Their Electromagnetic Coupling, JHEP 08 (2012) 093 [arXiv:1206.1048] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free Massive Gravity in the Stúckelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].

    ADS  Google Scholar 

  10. J. Kluson, Comments About Hamiltonian Formulation of Non-Linear Massive Gravity with Stuckelberg Fields, JHEP 06 (2012) 170 [arXiv:1112.5267] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Hassan, A. Schmidt-May and M. von Strauss, Proof of Consistency of Nonlinear Massive Gravity in the Stúckelberg Formulation, Phys. Lett. B 715 (2012) 335 [arXiv:1203.5283] [INSPIRE].

    ADS  Google Scholar 

  12. Y. Zinoviev, On massive spin 2 interactions, Nucl. Phys. B 770 (2007) 83 [hep-th/0609170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. W.M. Seiler, Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra, Algorithms and computations in Mathematics, Volume 24, Springer-Verlag, Berlin Heidelberg (2010).

  14. A. Einstein, The Meaning of the Relativity, 5th. edition, Princeton University Press, Princeton U.S.A. (1955).

    MATH  Google Scholar 

  15. K.H. Mariwalla, Application of the concept of strength of a system of partial differential equations, J. Math. Phys. 15 (1974) 468.

    Article  MathSciNet  ADS  Google Scholar 

  16. B.F. Schutz, On the strenght of a system of partial differential equations, J. Math. Phys. 16 (1975) 855.

    Article  MathSciNet  ADS  Google Scholar 

  17. N.F.J. Matthews, On the strenght of Maxwells equations, J. Math. Phys. 28 (1987) 810.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M. Sué, Involutive systems of differential equations: Einsteins strenght versus Cartans degré darbitraire, J. Math. Phys. 32 (1991) 392.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. Henneaux, C. Teitelboim and J. Zanelli, Gauge invariance and degree of freedom count, Nucl. Phys. B 332 (1990) 169 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, IHES-P-04-47, ULB-TH-04-26, ROM2F-04-29, FIAN-TD-17-04, hep-th/0503128 [INSPIRE].

  21. V. Lopatin and M.A. Vasiliev, Free massless bosonic fields of arbitrary spin in d-dimensional de Sitter space, Mod. Phys. Lett. A 3 (1988) 257 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. O. Shaynkman and M.A. Vasiliev, Scalar field in any dimension from the higher spin gauge theory perspective, Theor. Math. Phys. 123 (2000) 683 [hep-th/0003123] [INSPIRE].

    Article  MATH  Google Scholar 

  23. E. Skvortsov, Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Lyakhovich and A. Sharapov, BRST theory without Hamiltonian and Lagrangian, JHEP 03 (2005) 011 [hep-th/0411247] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. P. Kazinski, S. Lyakhovich and A. Sharapov, Lagrange structure and quantization, JHEP 07 (2005) 076 [hep-th/0506093] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Kaparulin, S. Lyakhovich and A. Sharapov, Local BRST cohomology in (non-)Lagrangian field theory, JHEP 09 (2011) 006 [arXiv:1106.4252] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Henneaux, Space-time locality of the BRST formalism, Commun. Math. Phys. 140 (1991) 1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. M. Fierz and W. Pauli, On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field, Proc. R. Soc. London A 173 (1939) 211.

    MathSciNet  ADS  Google Scholar 

  29. L. Singh and C. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].

    ADS  Google Scholar 

  30. S. Lyakhovich and A. Sharapov, Schwinger-Dyson equation for non-Lagrangian field theory, JHEP 02 (2006) 007 [hep-th/0512119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Lyakhovich and A. Sharapov, Quantizing non-Lagrangian gauge theories: an augmentation method, JHEP 01 (2007) 047 [hep-th/0612086] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Kaparulin, S. Lyakhovich and A. Sharapov, Rigid Symmetries and Conservation Laws in Non-Lagrangian Field Theory, J. Math. Phys. 51 (2010) 082902 [arXiv:1001.0091] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Hassan and R.A. Rosen, On Non-Linear Actions for Massive Gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Hassan and R.A. Rosen, Confirmation of the Secondary Constraint and Absence of Ghost in Massive Gravity and Bimetric Gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].

    Article  ADS  Google Scholar 

  35. D. Eisenbud, The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra, Graduate Texts in Mathematics, Volume 229, Springer-Verlag New York Inc., NY U.S.A. (2005).

  36. S.L. Lyakhovich and A.A. Sharapov, work in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Lyakhovich.

Additional information

ArXiv ePrint: 1210.6821

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaparulin, D.S., Lyakhovich, S.L. & Sharapov, A.A. Consistent interactions and involution. J. High Energ. Phys. 2013, 97 (2013). https://doi.org/10.1007/JHEP01(2013)097

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)097

Keywords

Navigation