Skip to main content
Log in

The one-loop and Sommerfeld electroweak corrections to the Wino dark matter annihilation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the present-day Wino dark matter annihilation cross-section including the one-loop radiative corrections together with the fully treated electroweak Sommerfeld effect. We discuss what is the consistent way of incorporating these two corrections simultaneously and why simply using the running coupling constants values at the Winomass scale is not correct. The results show that up to a few TeV scale the full one-loop computation makes the cross-section smaller up to about 30% with respect to the Sommerfeld enhanced tree level result and are considerably larger than the tree or one-loop level without the Sommerfeld effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Boudjema, A. Semenov and D. Temes, Self-annihilation of the neutralino dark matter into two photons or a Z and a photon in the MSSM, Phys. Rev. D 72 (2005) 055024 [hep-ph/0507127] [INSPIRE].

    ADS  Google Scholar 

  2. N. Baro, F. Boudjema and A. Semenov, Full one-loop corrections to the relic density in the MSSM: a few examples, Phys. Lett. B 660 (2008) 550 [arXiv:0710.1821] [INSPIRE].

    ADS  Google Scholar 

  3. N. Baro, F. Boudjema, G. Chalons and S. Hao, Relic density at one-loop with gauge boson pair production, Phys. Rev. D 81 (2010) 015005 [arXiv:0910.3293] [INSPIRE].

    ADS  Google Scholar 

  4. M. Kachelriess and P. Serpico, Model-independent dark matter annihilation bound from the diffuse γ ray flux, Phys. Rev. D 76 (2007) 063516 [arXiv:0707.0209] [INSPIRE].

    ADS  Google Scholar 

  5. N.F. Bell, J.B. Dent, T.D. Jacques and T.J. Weiler, Electroweak bremsstrahlung in dark matter annihilation, Phys. Rev. D 78 (2008) 083540 [arXiv:0805.3423] [INSPIRE].

    ADS  Google Scholar 

  6. J.B. Dent, R.J. Scherrer and T.J. Weiler, Toward a minimum branching fraction for dark matter annihilation into electromagnetic final states, Phys. Rev. D 78 (2008) 063509 [arXiv:0806.0370] [INSPIRE].

    ADS  Google Scholar 

  7. M. Kachelriess, P. Serpico and M. Solberg, On the role of electroweak bremsstrahlung for indirect dark matter signatures, Phys. Rev. D 80 (2009) 123533 [arXiv:0911.0001] [INSPIRE].

    ADS  Google Scholar 

  8. P. Ciafaloni and A. Urbano, TeV scale dark matter and electroweak radiative corrections, Phys. Rev. D 82 (2010) 043512 [arXiv:1001.3950] [INSPIRE].

    ADS  Google Scholar 

  9. P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, Weak corrections are relevant for dark matter indirect detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].

    Article  ADS  Google Scholar 

  10. N.F. Bell, J.B. Dent, T.D. Jacques and T.J. Weiler, Dark matter annihilation signatures from electroweak bremsstrahlung, Phys. Rev. D 84 (2011) 103517 [arXiv:1101.3357] [INSPIRE].

    ADS  Google Scholar 

  11. P. Ciafaloni, M. Cirelli, D. Comelli, A. De Simone, A. Riotto and A. Urbano, On the importance of electroweak corrections for Majorana dark matter indirect detection, JCAP 06 (2011) 018 [arXiv:1104.2996] [INSPIRE].

    Article  ADS  Google Scholar 

  12. N.F. Bell, J.B. Dent, A.J. Galea, T.D. Jacques, L.M. Krauss and T.J. Weiler, W/Z bremsstrahlung as the dominant annihilation channel for dark matter, revisited, Phys. Lett. B 706 (2011) 6 [arXiv:1104.3823] [INSPIRE].

    ADS  Google Scholar 

  13. M. Garny, A. Ibarra and S. Vogl, Antiproton constraints on dark matter annihilations from internal electroweak bremsstrahlung, JCAP 07 (2011) 028 [arXiv:1105.5367] [INSPIRE].

    Article  ADS  Google Scholar 

  14. L. Bergstrom, T. Bringmann, M. Eriksson and M. Gustafsson, Gamma rays from heavy neutralino dark matter, Phys. Rev. Lett. 95 (2005) 241301 [hep-ph/0507229] [INSPIRE].

    Article  ADS  Google Scholar 

  15. T. Bringmann, L. Bergstrom and J. Edsjo, New Gamma-ray contributions to supersymmetric dark matter annihilation, JHEP 01 (2008) 049 [arXiv:0710.3169] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Sommerfeld, Über die Beugung und Bremsung der Elektronen (in German), Annalen Phys. 403 (1931) 257.

    Article  ADS  Google Scholar 

  17. D.P. Finkbeiner, L. Goodenough, T.R. Slatyer, M. Vogelsberger and N. Weiner, Consistent scenarios for cosmic-ray excesses from Sommerfeld-enhanced dark matter annihilation, JCAP 05 (2011) 002 [arXiv:1011.3082] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Hisano, S. Matsumoto and M.M. Nojiri, Unitarity and higher order corrections in neutralino dark matter annihilation into two photons, Phys. Rev. D 67 (2003) 075014 [hep-ph/0212022] [INSPIRE].

    ADS  Google Scholar 

  19. J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].

    ADS  Google Scholar 

  21. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].

    ADS  Google Scholar 

  22. A. Hryczuk, R. Iengo and P. Ullio, Relic densities including Sommerfeld enhancements in the MSSM, JHEP 03 (2011) 069 [arXiv:1010.2172] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Hryczuk, The Sommerfeld enhancement for scalar particles and application to sfermion co-annihilation regions, Phys. Lett. B 699 (2011) 271 [arXiv:1102.4295] [INSPIRE].

    ADS  Google Scholar 

  24. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    Article  ADS  Google Scholar 

  25. H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, Generic and chiral extensions of the supersymmetric standard model, Nucl. Phys. B 543 (1999) 47 [hep-ph/9811316] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Iengo, Sommerfeld enhancement: General results from field theory diagrams, JHEP 05 (2009) 024 [arXiv:0902.0688] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Google Scholar 

  28. T.R. Slatyer, The Sommerfeld enhancement for dark matter with an excited state, JCAP 02 (2010) 028 [arXiv:0910.5713] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Iengo, in preparation.

  30. Particle Data Group collaboration, C. Amsler et al. Review of particle physics, Phys. Lett. B 667 (2008)1 [INSPIRE].

    ADS  Google Scholar 

  31. M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Hryczuk, R. Iengo and P. Ullio, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Hryczuk.

Additional information

ArXiv ePrint: 1111.2916

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hryczuk, A., Iengo, R. The one-loop and Sommerfeld electroweak corrections to the Wino dark matter annihilation. J. High Energ. Phys. 2012, 163 (2012). https://doi.org/10.1007/JHEP01(2012)163

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)163

Keywords

Navigation