Skip to main content
Log in

Non-standard neutrino propagation and pion decay

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Motivated by the findings of the OPERA experiment, we discuss the hypothesis that neutrino propagation does not obey Einstein special relativity. Under a minimal set of modifications of the standard model Lagrangian, we consider the implications of non standard neutrino propagation on the description of neutrino interactions and, specifically, on the pion decay processes. We show that all the different dispersion relations which have been proposed so far to explain OPERA results, imply huge departures from the standard expectations. The decay channel π+ → e+νe becomes significantly larger than in the standard scenario, and may even dominate over π+ → μ+νμ. Moreover, the spectral distribution of neutrinos produced in the decay processes and the probability that a pion decays in flight in neutrinos show large deviations from the standard results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].

  2. MINOS collaboration, P. Adamson et al., Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam, Phys. Rev. D 76 (2007) 072005 [arXiv:0706.0437] [INSPIRE].

    ADS  Google Scholar 

  3. M.J. Longo, Tests of relativity from SN1987A, Phys. Rev. D 36 (1987) 3276 [INSPIRE].

    Article  ADS  Google Scholar 

  4. IMB collaboration, R.M. Bionta et al., Observation of a neutrino burst in coincidence with supernova SN 1987A in the Large Magellanic Cloud, Phys. Rev. Lett. 58 (1987) 1494

    Article  ADS  Google Scholar 

  5. KAMIOKANDE-II collaboration, K. Hirata et al., Observation of a Neutrino Burst from the Supernova SN 1987a, Phys. Rev. Lett. 58 (1987) 1490 [INSPIRE].

    Article  ADS  Google Scholar 

  6. J.R. Ellis, N. Harries, A. Meregaglia, A. Rubbia and A. Sakharov, Probes of Lorentz violation in neutrino propagation, Phys. Rev. D 78 (2008) 033013 [arXiv:0805.0253] [INSPIRE].

    ADS  Google Scholar 

  7. G. Cacciapaglia, A. Deandrea and L. Panizzi, Superluminal neutrinos in long baseline experiments and SN1987a, JHEP 11 (2011) 137 [arXiv:1109.4980] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G.F. Giudice, S. Sibiryakov and A. Strumia, Interpreting OPERA results on superluminal neutrino, arXiv:1109.5682 [INSPIRE].

  9. A.G. Cohen and S.L. Glashow, Pair creation constrains superluminal neutrino propagation, Phys. Rev. Lett. 107 (2011) 181803 [arXiv:1109.6562] [INSPIRE].

    Article  ADS  Google Scholar 

  10. X.-J. Bi, P.-F. Yin, Z.-H. Yu and Q. Yuan, Constraints and tests of the OPERA superluminal neutrinos, Phys. Rev. Lett. 107 (2011) 241802 [arXiv:1109.6667] [INSPIRE].

    Article  ADS  Google Scholar 

  11. F. Villante and F. Vissani, On the generality of the Cohen and Glashow constraints on the neutrino velocity, arXiv:1110.4591 [INSPIRE].

  12. M. Li, D. Liu, J. Meng, T. Wang and L. Zhou, Replaying neutrino bremsstrahlung with general dispersion relations, arXiv:1111.3294 [INSPIRE].

  13. L. Gonzalez-Mestres, Astrophysical consequences of the OPERA superluminal neutrino, arXiv:1109.6630 [INSPIRE].

  14. R. Cowsik, S. Nussinov and U. Sarkar, Superluminal neutrinos at OPERA confront pion decay kinematics, Phys. Rev. Lett. 107 (2011) 251801 [arXiv:1110.0241] [INSPIRE].

    Article  ADS  Google Scholar 

  15. B. Altschul, Consequences of neutrino Lorentz violation for leptonic meson decays, Phys. Rev. D 84 (2011) 091902 [arXiv:1110.2123] [INSPIRE].

    ADS  Google Scholar 

  16. S.R. Coleman and S.L. Glashow, High-energy tests of Lorentz invariance, Phys. Rev. D 59 (1999)116008 [hep-ph/9812418] [INSPIRE].

    Article  ADS  Google Scholar 

  17. W.D. Arnett, On the early behavior of supernova 1987A, Astrophys. J. 331 (1988) 377

    Article  ADS  Google Scholar 

  18. See the IAU circulars 4316 and 4340 (http://www.cbat.eps.harvard.edu/iauc/04300/04316.html and http://www.cbat.eps.harvard.edu/iauc/04300/04316.html) as quoted by [17].

  19. F. Vissani, The beta spectrum in presence of background potentials for neutrinos, Phys. Lett. B 413 (1997) 101 [hep-ph/9707343] [INSPIRE].

    ADS  Google Scholar 

  20. C. Kraus et al., Final results from phase II of the Mainz neutrino mass search in tritium beta decay, Eur. Phys. J. C 40 (2005) 447 [hep-ex/0412056] [INSPIRE].

    Article  ADS  Google Scholar 

  21. V. Lobashev, V. Aseev, A. Belesev, A. Berlev, E. Geraskin, et al., Direct search for mass of neutrino and anomaly in the tritium beta spectrum, Phys. Lett. B 460 (1999) 227 [INSPIRE].

    ADS  Google Scholar 

  22. T.J. Loredo and D.Q. Lamb, Bayesian analysis of neutrinos observed from supernova SN 1987A, Phys. Rev. D 65 (2002) 063002 [astro-ph/0107260] [INSPIRE].

    ADS  Google Scholar 

  23. G. Pagliaroli, F. Rossi-Torres and F. Vissani, Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission, Astropart. Phys. 33 (2010) 287 [arXiv:1002.3349] [INSPIRE].

    Article  ADS  Google Scholar 

  24. H.B. Nielsen and I. Picek, Redei like model and testing Lorentz invariance, Phys. Lett. B 114 (1982)141 [INSPIRE].

    ADS  Google Scholar 

  25. H.B. Nielsen and I. Picek, Lorentz noninvariance, Nucl. Phys. B 211 (1983) 269 [Addendum ibid. B 242 (1984) 542] [INSPIRE]].

    Article  ADS  Google Scholar 

  26. D. Bryman et al., Measurement of the πeν branching ratio, Phys. Rev. D 33 (1986) 1211 [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Britton et al., Measurement of the π + → e + ν branching ratio, Phys. Rev. Lett. 68 (1992) 3000 [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Czapek et al., Branching ratio for the rare pion decay into positron and neutrino, Phys. Rev. Lett. 70 (1993) 17 [INSPIRE].

    Article  ADS  Google Scholar 

  29. A.J. Greenberget al., Charged pion lifetime and a limit on a fundamental length, Phys. Rev. Lett. 23 (1969) 1267 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manimala Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannarelli, M., Mitra, M., Villante, F.L. et al. Non-standard neutrino propagation and pion decay. J. High Energ. Phys. 2012, 136 (2012). https://doi.org/10.1007/JHEP01(2012)136

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)136

Keywords

Navigation