Skip to main content
Log in

The Gödel-Schrödinger spacetime and stringy chronology protection

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show that the null Melvin map applied to a rotational isometry of global anti-de Sitter space produces a spacetime with properties analogous to both the Gödel and Schrödinger geometries. The isometry group of this Gödel-Schrödinger spacetime is appropriate to provide a holographic dual for the same non-relativistic conformal theory as the ordinary Schrödinger geometry, but defined on a sphere. This spacetime also possesses closed timelike curves outside a certain critical radius. We show that a holographic preferred screen for an observer at the origin sits at an interior radius, suggesting that a holographic dual description would only require the chronologically consistent region. Additionally, giant graviton probe branes experience repulson-type instabilities in the acausal region, suggesting a condensation of branes will modify the pathological part of the geometry to remove the closed timelike curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hawking, The Chronology protection conjecture, Phys. Rev. D 46 (1992) 603 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  4. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Google Scholar 

  5. M. Ammon, Gauge/gravity duality applied to condensed matter systems, Fortsch. Phys. 58 (2010) 1123 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. D.T. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [INSPIRE].

    Article  ADS  Google Scholar 

  11. Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. K. Balasubramanian and J. McGreevy, The Particle number in Galilean holography, JHEP 01 (2011) 137 [arXiv:1007.2184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Adams and J. Wang, Towards a Non-Relativistic Holographic Superfluid, New J. Phys. 13 (2011) 115008 [arXiv:1103.3472] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Alishahiha and O.J. Ganor, Twisted backgrounds, PP waves and nonlocal field theories, JHEP 03 (2003) 006 [hep-th/0301080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. E.G. Gimon, A. Hashimoto, V.E. Hubeny, O. Lunin and M. Rangamani, Black strings in asymptotically plane wave geometries, JHEP 08 (2003) 035 [hep-th/0306131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Adams, C.M. Brown, O. DeWolfe and C. Rosen, Charged Schrödinger Black Holes, Phys. Rev. D 80 (2009) 125018 [arXiv:0907.1920] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. E. Imeroni and A. Sinha, Non-relativistic metrics with extremal limits, JHEP 09 (2009) 096 [arXiv:0907.1892] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Sonner, A Rotating Holographic Superconductor, Phys. Rev. D 80 (2009) 084031 [arXiv:0903.0627] [INSPIRE].

    ADS  Google Scholar 

  20. K. Godel, An Example of a new type of cosmological solutions of Einstein’s field equations of graviation, Rev. Mod. Phys. 21 (1949) 447 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five- dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. T. Harmark and T. Takayanagi, Supersymmetric Godel universes in string theory, Nucl. Phys. B 662 (2003) 3 [hep-th/0301206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Bousso, A Covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. R. Bousso, Holography in general space-times, JHEP 06 (1999) 028 [hep-th/9906022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. E.K. Boyda, S. Ganguli, P. Hořava and U. Varadarajan, Holographic protection of chronology in universes of the Godel type, Phys. Rev. D 67 (2003) 106003 [hep-th/0212087] [INSPIRE].

    ADS  Google Scholar 

  26. L. Dyson, Chronology protection in string theory, JHEP 03 (2004) 024 [hep-th/0302052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Behrndt, About a class of exact string backgrounds, Nucl. Phys. B 455 (1995) 188 [hep-th/9506106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Kallosh and A.D. Linde, Exact supersymmetric massive and massless white holes, Phys. Rev. D 52 (1995) 7137 [hep-th/9507022] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. M. Cvetič and D. Youm, Singular BPS saturated states and enhanced symmetries of four-dimensional N = 4 supersymmetric string vacua, Phys. Lett. B 359 (1995) 87 [hep-th/9507160] [INSPIRE].

    ADS  Google Scholar 

  30. C.V. Johnson, A.W. Peet and J. Polchinski, Gauge theory and the excision of repulson singularities, Phys. Rev. D 61 (2000) 086001 [hep-th/9911161] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. N. Drukker, B. Fiol and J. Simon, Godel’s universe in a supertube shroud, Phys. Rev. Lett. 91 (2003) 231601 [hep-th/0306057] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. C. Herdeiro, Special properties of five-dimensional BPS rotating black holes, Nucl. Phys. B 582 (2000) 363 [hep-th/0003063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. C.A. Herdeiro, Spinning deformations of the D1 - D5 system and a geometric resolution of closed timelike curves, Nucl. Phys. B 665 (2003) 189 [hep-th/0212002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Brace, C.A. Herdeiro and S. Hirano, Classical and quantum strings in compactified pp waves and Godel type universes, Phys. Rev. D 69 (2004) 066010 [hep-th/0307265] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. D. Israel, Quantization of heterotic strings in a Godel/anti-de Sitter space-time and chronology protection, JHEP 01 (2004) 042 [hep-th/0310158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. E.G. Gimon and P. Hořava, Over-rotating black holes, Godel holography and the hypertube, hep-th/0405019 [INSPIRE].

  37. C.V. Johnson and H.G. Svendsen, An Exact string theory model of closed time-like curves and cosmological singularities, Phys. Rev. D 70 (2004) 126011 [hep-th/0405141] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. W.-H. Huang, Instability of tachyon supertube in type IIA Godel spacetime, Phys. Lett. B 615 (2005) 266 [hep-th/0412096] [INSPIRE].

    ADS  Google Scholar 

  39. M.S. Costa, C.A. Herdeiro, J. Penedones and N. Sousa, Hagedorn transition and chronology protection in string theory, Nucl. Phys. B 728 (2005) 148 [hep-th/0504102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. L. Dyson, Studies Of The Over-Rotating BMPV Solution, JHEP 01 (2007) 008 [hep-th/0608137] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. T.S. Levi, J. Raeymaekers, D. Van den Bleeken, W. Van Herck and B. Vercnocke, Godel space from wrapped M2-branes, JHEP 01 (2010) 082 [arXiv:0909.4081] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Raeymaekers, D. Van den Bleeken and B. Vercnocke, Relating chronology protection and unitarity through holography, JHEP 04 (2010) 021 [arXiv:0911.3893] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J. Raeymaekers, D. Van den Bleeken and B. Vercnocke, Chronology protection and the stringy exclusion principle, JHEP 04 (2011) 037 [arXiv:1011.5693] [INSPIRE].

    Article  ADS  Google Scholar 

  44. U. Theis, Free Lunch from T-duality, arXiv:1002.4758 [INSPIRE].

  45. B.S. Kim and D. Yamada, Properties of Schroedinger Black Holes from AdS Space, JHEP 07 (2011) 120 [arXiv:1008.3286] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. N. Banerjee, S. Dutta and D.P. Jatkar, Geometry and Phase Structure of Non-Relativistic Branes, Class. Quant. Grav. 28 (2011) 165002 [arXiv:1102.0298] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. P. Kraus and E. Perlmutter, Universality and exactness of Schrödinger geometries in string and M-theory, JHEP 05 (2011) 045 [arXiv:1102.1727] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger Space-Times, Global Coordinates and Harmonic Trapping, JHEP 07 (2009) 027 [arXiv:0904.3304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger Space-Times II: Particle and Field Probes of the Causal Structure, JHEP 07 (2010) 069 [arXiv:1005.0760] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB Solutions with Schrödinger Symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. H. Ooguri and C.-S. Park, Supersymmetric non-relativistic geometries in M-theory, Nucl. Phys. B 824 (2010) 136 [arXiv:0905.1954] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. S.W. Hawking, G.F.R. Ellis, The Large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973).

    Book  MATH  Google Scholar 

  55. A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. R. Bousso and L. Randall, Holographic domains of anti-de Sitter space, JHEP 04 (2002) 057 [hep-th/0112080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. S. Deser, R. Jackiw and G. ť Hooft, Physical cosmic strings do not generate closed timelike curves, Phys. Rev. Lett. 68 (1992) 267 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602 [hep-th/0103030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. R. Emparan, D. Mateos and P.K. Townsend, Supergravity supertubes, JHEP 07 (2001) 011 [hep-th/0106012] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. N. Drukker, B. Fiol and J. Simon, Godel type universes and the Landau problem, JCAP 10 (2004) 012 [hep-th/0309199] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver DeWolfe.

Additional information

ArXiv ePrint: 1110.3840

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C.M., DeWolfe, O. The Gödel-Schrödinger spacetime and stringy chronology protection. J. High Energ. Phys. 2012, 32 (2012). https://doi.org/10.1007/JHEP01(2012)032

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)032

Keywords

Navigation