Skip to main content
Log in

Adiabaticity and emergence of classical space-time in time-dependent matrix theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss the low-curvature regime of time-dependent matrix theories proposed to describe non-perturbative quantum gravity in asymptotically plane-wave space-times. The emergence of near-classical space-time in this limit turns out to be closely linked to the adiabaticity of the matrix theory evolution. Supersymmetry restoration at low curvatures, which is crucial for the usual space-time interpretation of matrix theories, becomes an obvious feature of the adiabatic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Craps, S. Sethi and E.P. Verlinde, A Matrix Big Bang, JHEP 10 (2005) 005 [hep-th/0506180] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. L. Motl, Proposals on nonperturbative superstring interactions, hep-th/9701025 [SPIRES].

  4. T. Banks and N. Seiberg, Strings from matrices, Nucl. Phys. B 497 (1997) 41 [hep-th/9702187] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Li, A class of cosmological matrix models, Phys. Lett. B 626 (2005) 202 [hep-th/0506260] [SPIRES].

    ADS  Google Scholar 

  7. M. Li and W. Song, Shock waves and cosmological matrix models, JHEP 10 (2005) 073 [hep-th/0507185] [SPIRES].

    Article  ADS  Google Scholar 

  8. S.R. Das and J. Michelson, pp wave big bangs: Matrix strings and shrinking fuzzy spheres, Phys. Rev. D 72 (2005) 086005 [hep-th/0508068] [SPIRES].

    ADS  Google Scholar 

  9. B. Chen, The time-dependent supersymmetric configurations in M-theory and matrix models, Phys. Lett. B 632 (2006) 393 [hep-th/0508191] [SPIRES].

    ADS  Google Scholar 

  10. D. Robbins and S. Sethi, A matrix model for the null-brane, JHEP 02 (2006) 052 [hep-th/0509204] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. S.R. Das and J. Michelson, Matrix membrane big bangs and D-brane production, Phys. Rev. D 73 (2006) 126006 [hep-th/0602099] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. E.J. Martinec, D. Robbins and S. Sethi, Toward the end of time, JHEP 08 (2006) 025 [hep-th/0603104] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. H.-Z. Chen and B. Chen, Matrix model in a class of time dependent supersymmetric backgrounds, Phys. Lett. B 638 (2006) 74 [hep-th/0603147] [SPIRES].

    ADS  Google Scholar 

  14. T. Ishino, H. Kodama and N. Ohta, Time-dependent solutions with null Killing spinor in M-theory and superstrings, Phys. Lett. B 631 (2005) 68 [hep-th/0509173] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. T. Ishino and N. Ohta, Matrix string description of cosmic singularities in a class of time-dependent solutions, Phys. Lett. B 638 (2006) 105 [hep-th/0603215] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. J. Bedford, C. Papageorgakis, D. Rodriguez-Gomez and J. Ward, Matrix Big Brunch, Phys. Rev. D 75 (2007) 085014 [hep-th/0702093] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. M. Blau and M. O’Loughlin, DLCQ and Plane Wave Matrix Big Bang Models, JHEP 09 (2008) 097 [arXiv:0806.3255] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [SPIRES].

  19. N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. A. Sen, D0 branes on T(n) and matrix theory, Adv. Theor. Math. Phys. 2 (1998) 51 [hep-th/9709220] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  21. B. Craps, A. Rajaraman and S. Sethi, Effective dynamics of the matrix big bang, Phys. Rev. D 73 (2006) 106005 [hep-th/0601062] [SPIRES].

    ADS  Google Scholar 

  22. M. O’Loughlin and L. Seri, The non-Abelian gauge theory of matrix big bangs, JHEP 07 (2010) 036 [arXiv:1003.0620] [SPIRES].

    Article  MathSciNet  Google Scholar 

  23. A. Awad, S.R. Das, A. Ghosh, J.-H. Oh and S.P. Trivedi, Slowly Varying Dilaton Cosmologies and their Field Theory Duals, Phys. Rev. D 80 (2009) 126011 [arXiv:0906.3275] [SPIRES].

    ADS  Google Scholar 

  24. W. Taylor, D-brane field theory on compact spaces, Phys. Lett. B 394 (1997) 283 [hep-th/9611042] [SPIRES].

    ADS  Google Scholar 

  25. B. Craps, Big bang models in string theory, Class. Quant. Grav. 23 (2006) S849 [hep-th/0605199] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Messiah, Quantum Mechanics. Vol. II, North Holland, Amsterdam Netherlands (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Evnin.

Additional information

ArXiv ePrint: 1011.0820

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craps, B., Evnin, O. Adiabaticity and emergence of classical space-time in time-dependent matrix theories. J. High Energ. Phys. 2011, 130 (2011). https://doi.org/10.1007/JHEP01(2011)130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)130

Keywords

Navigation