Skip to main content
Log in

Vacuum stability, perturbativity, and scalar singlet dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyze the one-loop vacuum stability and perturbativity bounds on a singlet extension of the Standard Model (SM) scalar sector containing a scalar dark matter candidate. We show that the presence of the singlet-doublet quartic interaction relaxes the vacuum stability lower bound on the SM Higgs mass as a function of the cutoff and lowers the corresponding upper bound based on perturbativity considerations. We also find that vacuum stability requirements may place a lower bound on the singlet dark matter mass for given singlet quartic self coupling, leading to restrictions on the parameter space consistent with the observed relic density. We argue that discovery of a light singlet scalar dark matter particle could provide indirect information on the singlet quartic self-coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the standard model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [SPIRES].

    ADS  Google Scholar 

  2. M.C. Bento, O. Bertolami and R. Rosenfeld, Cosmological constraints on an invisibly decaying Higgs boson, Phys. Lett. B 518 (2001) 276 [hep-ph/0103340] [SPIRES].

    ADS  Google Scholar 

  3. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].

    ADS  Google Scholar 

  5. C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [SPIRES].

    Article  ADS  Google Scholar 

  6. X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [SPIRES].

    ADS  Google Scholar 

  7. J. McDonald, Thermally generated gauge singlet scalars as self-interacting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [SPIRES].

    Article  ADS  Google Scholar 

  8. M.C. Bento, O. Bertolami, R. Rosenfeld and L. Teodoro, Self-interacting dark matter and invisibly decaying Higgs, Phys. Rev. D 62 (2000) 041302 [astro-ph/0003350] [SPIRES].

    ADS  Google Scholar 

  9. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [SPIRES].

    ADS  Google Scholar 

  10. D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [SPIRES].

    ADS  Google Scholar 

  11. S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [SPIRES].

    Article  ADS  Google Scholar 

  12. J.R. Espinosa and M. Quirós, The electroweak phase transition with a singlet, Phys. Lett. B 305 (1993) 98 [hep-ph/9301285] [SPIRES].

    ADS  Google Scholar 

  13. G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [SPIRES].

    ADS  Google Scholar 

  14. O.J.P. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147 [hep-ph/0009158] [SPIRES].

    ADS  Google Scholar 

  15. V. Barger, P. Langacker and G. Shaughnessy, Collider signatures of singlet extended Higgs sectors, Phys. Rev. D 75 (2007) 055013 [hep-ph/0611239] [SPIRES].

    ADS  Google Scholar 

  16. H. Davoudiasl, T. Han and H.E. Logan, Discovering an invisibly decaying Higgs at hadron colliders, Phys. Rev. D 71 (2005) 115007 [hep-ph/0412269] [SPIRES].

    ADS  Google Scholar 

  17. CDMS-II collaboration, P.L. Brink et al., Beyond the CDMS-II dark matter search: superCDMS, astro-ph/0503583 [SPIRES].

  18. S.M. Carroll, S. Mantry and M.J. Ramsey-Musolf, Implications of a scalar dark force for terrestrial experiments, arXiv:0902.4461 [SPIRES].

  19. J. McDonald, N. Sahu and U. Sarkar, Seesaw at collider, lepton asymmetry and singlet scalar dark matter, JCAP 04 (2008) 037 [arXiv:0711.4820] [SPIRES].

    ADS  Google Scholar 

  20. D.N. Spergel and P.J. Steinhardt, Observational evidence for self-interacting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [SPIRES].

    Article  ADS  Google Scholar 

  21. T. Hambye and K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev. D 55 (1997) 7255 [hep-ph/9610272] [SPIRES].

    ADS  Google Scholar 

  22. J.A. Casas, J.R. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett. B 382 (1996) 374 [hep-ph/9603227] [SPIRES].

    ADS  Google Scholar 

  23. T.E. Clark, B. Liu, S.T. Love and T. ter Veldhuis, The standard model Higgs boson-inflaton and dark matter, Phys. Rev. D 80 (2009) 075019 [arXiv:0906.5595] [SPIRES].

    Google Scholar 

  24. R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [SPIRES].

    Google Scholar 

  25. C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [SPIRES].

    Article  ADS  Google Scholar 

  27. M. Lindner, Implications of triviality for the standard model, Zeit. Phys. C 31 (1986) 295 [SPIRES].

    ADS  Google Scholar 

  28. M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [SPIRES].

    ADS  Google Scholar 

  29. M. Sher, Precise vacuum stability bound in the standard model, Phys. Lett. B 317 (1993) 159 [hep-ph/9307342] [SPIRES].

    ADS  Google Scholar 

  30. J.A. Casas, J.R. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [hep-ph/9407389] [SPIRES].

    Article  ADS  Google Scholar 

  31. J.A. Casas, J.R. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [SPIRES].

    ADS  Google Scholar 

  32. J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [SPIRES].

    ADS  Google Scholar 

  33. G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [SPIRES].

    Article  ADS  Google Scholar 

  34. K. Riesselmann and S. Willenbrock, Ruling out a strongly-interacting standard Higgs model, Phys. Rev. D 55 (1997) 311 [hep-ph/9608280] [SPIRES].

    ADS  Google Scholar 

  35. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  36. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  37. R. Gaitskell, V. Mandic and J. Filippini, http://dmtools.berkeley.edu/limitplots.

  38. XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].

    Article  ADS  Google Scholar 

  39. CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [SPIRES].

    Article  ADS  Google Scholar 

  40. P. Fileviez Perez, H.H. Patel, M.J. Ramsey-Musolf and K. Wang, Triplet scalars and dark matter at the LHC, Phys. Rev. D 79 (2009) 055024 [arXiv:0811.3957] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Gonderinger.

Additional information

ArXiv ePrint: 0910.3167

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonderinger, M., Li, Y., Patel, H. et al. Vacuum stability, perturbativity, and scalar singlet dark matter. J. High Energ. Phys. 2010, 53 (2010). https://doi.org/10.1007/JHEP01(2010)053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)053

Keywords

Navigation