Skip to main content

Numerical aspects of parabolic free boundary and hysteresis problems

  • Chapter
  • First Online:
Phase Transitions and Hysteresis

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1584))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.M. Allen and J.W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsing, Acta Metall. Mater., 27 (1979), pp. 1085–1095.

    Article  Google Scholar 

  2. F. Almgren and L.H. Wang, Mathematical existence of crystal growth with Gibbs-Thomson curvature effects, in Proc. Evolving Phase Boundaries (Carnegie Mellon Univ., Pittsburgh, 1991).

    Google Scholar 

  3. R. Almgren, Variational algorithms and pattern formation in dendritic solidification, J. Comput. Phys., 106 (1993), pp. 337–354.

    Article  MathSciNet  MATH  Google Scholar 

  4. H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), pp. 311–341.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Altschuler, S. Angenent, and Y. Giga, Mean curvature flow through singularities for surfaces of rotation, Hokkaido Univ. Preprint, 130 (1991).

    Google Scholar 

  6. G. Amiez and P.A. Grémaud, On a numerical approach of Stefan-like problems, Numer. Math., 59 (1991), pp. 71–89.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Andreucci, Existence and uniqueness of solution to a concentrated capacity problem with change of phase, European J. Appl. Math., 1 (1990), pp. 339–351.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Andreucci and C. Verdi, Existence, uniqueness, and error estimates for a model of polymer crystallization, Adv. Math. Sci. Appl. (to appear).

    Google Scholar 

  9. D.G. Aronson, The porous medium equation, in Nonlinear Diffusion Problems, LNM 1024 (A. Fasano and M. Primicerio, eds.), Springer-Verlag, Berlin, 1985, pp. 1–46.

    Google Scholar 

  10. O. Axelsson and V.A. Barker, Finite Element Solution of Boundary Value Problems: Theory and Applications, Academic Press, Orlando, 1984.

    MATH  Google Scholar 

  11. I. Babuška, E.R. De A. Oliveira, J. Gago and O. C. Zienkiewicz, Accuracy Estimates and Adaptive Refinements in Finite Element Computations, Wiley, Chichester, 1986.

    MATH  Google Scholar 

  12. C. Baiocchi, Discretization of evolution inequalities, in Partial Differential Equations and Calculus of Variations, I (F. Colombini, A. Marino, L. Modica, S. Spagnolo, eds.), Birkhäuser, Boston, 1989, pp. 59–92.

    Google Scholar 

  13. C. Baiocchi and G.A. Pozzi, Error estimates and free boundary convergence for a finite difference discretization of a parabolic variational inequality, RAIRO Modél. Math. Anal. Numér., 11 (1977), pp. 315–340.

    MathSciNet  MATH  Google Scholar 

  14. G. Barles, H.M. Soner, and P.E. Souganidis, Front propagation and phase field theory, SIAM J. Control. Optim., 31 (1993), pp. 439–469.

    Article  MathSciNet  MATH  Google Scholar 

  15. V.P. Beghishev, S.A. Bolgov, I.A. Keapin, and A.Ya. Malkin, General treatment of polymer crystallization kinetics. Part 1: a new macrokinetic equation and its experimental verification, Polym. Engrg. Sci., 24 (1984), pp. 1396–1401.

    Article  Google Scholar 

  16. G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term, Differential Integral Equations (to appear).

    Google Scholar 

  17. G. Bellettini and M. Paolini, Two examples of fattening for the curvature flow with a driving force, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) (to appear).

    Google Scholar 

  18. G. Bellettini, M. Paolini, and C. Verdi, Γ-convergence of discrete approximations to interfaces with prescribed mean curvature, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9), 1 (1990), pp. 317–328.

    MathSciNet  MATH  Google Scholar 

  19. G. Bellettini, M. Paolini, and C. Verdi, Numerical minimization of geometrical type problems related to calculus of variations, Calcolo, 27 (1991), pp. 251–278.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.E. Berger, H. Brézis, and J.C.W. Rogers, A numerical method for solving the problem u t −Δf(u)=0, RAIRO Modél. Math. Anal. Numér., 13 (1979), pp. 297–312.

    MATH  Google Scholar 

  21. A.E. Berger and J.C.W. Rogers, Some properties of the nonlinear semigroup for the problem u t −Δf(u)=0, Nonlinear Anal., 8 (1984), pp. 909–939.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Berger, A. Köppl, and W. Schneider, Non-isothermal crystallization, crystallization of polymers, system of rate equations, Intern. Polymer Processing, 2 (1988), pp. 151–154.

    Google Scholar 

  23. A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.

    MATH  Google Scholar 

  24. K.A. Brakke, The Motion of a Surface by its Mean Curvature, Princeton University Press, Princeton, 1978.

    MATH  Google Scholar 

  25. H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Nonlinear Functional Analysis (E. Zarantonello ed.), Academic Press, New York, 1971, pp. 101–156.

    Google Scholar 

  26. H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  27. H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Funct. Anal., 9 (1972), pp. 63–74.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Brezzi and L.A. Caffarelli, Convergence of the discrete free boundaries for finite element approximations, RAIRO Modél. Math. Anal. Numér., 17 (1983), pp. 385–395.

    MathSciNet  Google Scholar 

  29. M. Brokate, Hysteresis operators, in [144] Modelling and Analysis of Phase Transition and Hysteresis Phenomena, Springer-Verlag, Berlin, to appear.

    Google Scholar 

  30. L. Bronsard and R.V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Differential Equations, 90 (1991), pp. 211–237.

    Article  MathSciNet  MATH  Google Scholar 

  31. L.A. Caffarelli, A remark on the Hausdorff measure of a free boundary and the convergence of coincidence sets, Boll. Un. Mat. Ital. A (6), 18 (1981), pp. 109–113.

    MathSciNet  MATH  Google Scholar 

  32. G. Caginalp, The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 44 (1990), pp. 77–94.

    Article  MathSciNet  MATH  Google Scholar 

  33. J.W. Cahn, C.A. Handwerker, and J.E. Taylor, Geometric models of crystal growth, Acta Metall. Mater., 40 (1992), pp. 1443–1474.

    Article  Google Scholar 

  34. X. Chen, Generation and propagation of interfaces in reaction-diffusion equations, J. Differential Equations, 96 (1992), pp. 116–141.

    Article  MathSciNet  MATH  Google Scholar 

  35. X. Chen and C.M. Elliott, Asymptotics for a parabolic double obstacle problem, Proc. Roy. Soc. London Ser. A (to appear).

    Google Scholar 

  36. Y.G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom., 33 (1991), pp. 749–786.

    MathSciNet  MATH  Google Scholar 

  37. H.L. Chin, A finite element front-tracking enthalpy method for Stefan problems, IMA J. Numer. Anal., 3 (1983), pp. 87–107.

    Article  MathSciNet  MATH  Google Scholar 

  38. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  39. Ph.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 2 (1973), pp. 17–31.

    Article  MathSciNet  MATH  Google Scholar 

  40. J.F. Ciavaldini, Analyse numérique d’un problème de Stefan à deux phases par une méthode d’éléments finis, SIAM J. Numer. Anal., 12 (1975), pp. 464–487.

    Article  MathSciNet  MATH  Google Scholar 

  41. M.G. Crandall, H. Ishii, and P.L. Lions, Usér’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), pp. 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  42. M.G. Crandall and T.M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), pp. 265–298.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.

    MATH  Google Scholar 

  44. A.B. Crowley, On the weak solution of moving boundary problems, IMA J. Appl. Math., 24 (1979), pp. 43–57.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Damlamian, Some results on the multiphase Stefan problem, Comm. Partial Differential Equations, 2 (1977), pp. 1017–1044.

    Article  MathSciNet  MATH  Google Scholar 

  46. I.I. Danilyuk, On the Stefan problem, Russian Math. Surveys, 40 (1985), pp. 157–223.

    Article  MathSciNet  MATH  Google Scholar 

  47. E. De Giorgi, New ideas in calculus of variations and geometric measure theory, in Motion by Mean Curvature and Related Topics (G. Buttazzo and A. Visintin, eds.), Gruyter, Berlin, 1994, pp. 63–69.

    Google Scholar 

  48. P. De Mottoni and M. Schatzman, Geometrical evolution of developped interfaces, Trans. Amer. Math. Soc. (to appear).

    Google Scholar 

  49. E. Di Benedetto and D. Hoff, An interface tracking algorithm for the porous medium equation, Trans. Amer. Math. Soc., 284 (1984), pp. 463–500.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Douglas Jr. and T. Dupont, Alternating-direction Galerkin methods on rectangles, in Numerical Solutions of Partial Differential Equations, II (B. Hubbard ed.), Academic Press, New York, 1971, pp. 133–214.

    Google Scholar 

  51. J. Douglas Jr., T. Dupont, and R. Ewing, Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal., 16 (1979), pp. 503–522.

    Article  MathSciNet  MATH  Google Scholar 

  52. G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), pp. 603–611.

    Article  MathSciNet  MATH  Google Scholar 

  53. C.M. Elliott, Error analysis of the enthalpy method for the stefan problem, IMA J. Numer. Anal., 7 (1987), pp. 61–71.

    Article  MathSciNet  MATH  Google Scholar 

  54. J.F. Epperson, Regularization for a class of nonlinear evolution equations, SIAM J. Math. Anal., 17 (1986), pp. 84–90.

    Article  MathSciNet  MATH  Google Scholar 

  55. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 43–77.

    Article  MathSciNet  MATH  Google Scholar 

  56. L.C. Evans, H.M. Soner, and P.E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), pp. 1097–1123.

    Article  MathSciNet  MATH  Google Scholar 

  57. L.C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), pp. 635–681.

    MathSciNet  MATH  Google Scholar 

  58. A. Fasano and M. Primicerio, Convergence of Hüber method’s for heat conduction problems with change of phase, Z. Angew. Math. Mech., 53 (1973), pp. 341–348.

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Fasano, M. Primicerio, and L. Rubinstein, A model problem for heat conduction with a free boundary in a concentrated capacity, IMA J. Appl. Math., 26 (1980), pp. 327–347.

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Friedman, The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), pp. 51–87.

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Friedman, Variational Principles and Free Boundary Problems, Wiley, New York, 1982.

    MATH  Google Scholar 

  62. Y. Giga, S. Goto, H. Ishii, and M.H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., 40 (1991), pp. 443–470.

    Article  MathSciNet  MATH  Google Scholar 

  63. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.

    Book  MATH  Google Scholar 

  64. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.

    Book  MATH  Google Scholar 

  65. I.G. Götz and B.B. Zaltzmann, Nonincrease of mushy region in a nonhomogeneous Stefan problem, Quart. Appl. Math., 49 (1991), pp. 741–746.

    MathSciNet  MATH  Google Scholar 

  66. M. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), pp. 285–314.

    MathSciNet  MATH  Google Scholar 

  67. P. Hansbo and C. Johnson, Adaptive finite element methods in computational mechanics, Comput. Methods Appl. Mech. Engrg., 101 (1992), pp. 143–181.

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Hilpert, On uniqueness for evolution problems with hysteresis, in Mathematical Models for Phase Change Problems, ISNM 88 (J.F. Rodrigues ed.), Birkhäuser, Basel, 1989, pp. 377–388.

    Chapter  Google Scholar 

  69. K. Hoffman, J. Sprekels, and A. Visintin, Identification of hysteresis loops, J. Comput. Phys., 78 (1988), pp. 215–230.

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Huang, Regularity of the enthalpy for two-phase Stefan problem in several space variables, IMA Preprint, Minneapolis (1992).

    Google Scholar 

  71. W. Jäger and J. Kačur, Solution of porous medium type systems by linear approximation schemes, Numer. Math., 60 (1991), pp. 407–427.

    Article  MathSciNet  MATH  Google Scholar 

  72. J.W. Jerome, Approximation of Nonlinear Evolution Systems, Academic Press, New York, 1983.

    MATH  Google Scholar 

  73. J.W. Jerome and M.E. Rose, Error estimates for the multidimensional two-phase Stefan problem, Math. Comp., 39 (1982), pp. 377–414.

    Article  MathSciNet  MATH  Google Scholar 

  74. X. Jiang and R.H. Nochetto, A finite element method for a phase relaxation model. Part I: quasi-uniform mesh, SIAM J. Numer. Anal. (to appear).

    Google Scholar 

  75. X. Jiang and R.H. Nochetto, Optimal error estimates for a semidiscrete phase relaxation model, SIAM J. Numer. Anal. (to appear).

    Google Scholar 

  76. X. Jiang, R.H. Nochetto, and C. Verdi, A P1−P0finite element method for a model of polymer crystallization, Preprint (1994).

    Google Scholar 

  77. S.L. Kamenomostskaja, On the Stefan problem, Math. Sbornik, 53 (1961), pp. 489–514.

    MathSciNet  Google Scholar 

  78. J.B. Keller, J. Rubinstein, and P. Sternberg, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math., 49 (1989), pp. 116–133.

    Article  MathSciNet  MATH  Google Scholar 

  79. N. Kenmochi, Systems of nonlinear PDEs arising from dynamical phase transition, in [144] Modelling and Analysis of Phase Transition and Hysteresis Phenomena, Springer-Verlag, Berlin, to appear.

    Google Scholar 

  80. M.A. Krasnosel’skii and A.V. Pokrowskii, Systems with Hysteresis, Springer-Verlag, Berlin, 1989.

    Book  Google Scholar 

  81. Yu.A. Kuznetsov and A.V. Lapin, Domain decomposition method to realize an implicit difference scheme for the one-phase Stefan problem, Sov. J. Numer. Anal. Math. Modelling, 3 (1988), pp. 487–504.

    MathSciNet  MATH  Google Scholar 

  82. A.V. Lapin, Domain decomposition method for grid approximation of two-phase Stefan problem, Sov. J. Numer. Anal. Math. Modelling, 6 (1991), pp. 25–42.

    Article  MathSciNet  MATH  Google Scholar 

  83. S. Luckhaus, Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, European J. Appl. Math., 1 (1990), pp. 101–111.

    Article  MathSciNet  MATH  Google Scholar 

  84. E. Magenes, Problemi di Stefan bifase in più variabili spaziali, Matematiche (Catania), 36 (1981), pp. 65–108.

    MathSciNet  Google Scholar 

  85. E. Magenes, Numerical approximation of nonlinear evolution problems, in Frontiers in Pure and Applied Mathematics (R. Dautray ed.), North-Holland, Amsterdam, 1991, pp. 193–207.

    Google Scholar 

  86. E. Magenes, The Stefan problem in a concentrated capacity, in Problemi attuali dell’Analisi e della Fisica Matematica (dedicated to G. Fichera), 1992, to appear.

    Google Scholar 

  87. E. Magenes, R.H. Nochetto, and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, RAIRO Modél. Math. Anal. Numér., 21 (1987), pp. 655–678.

    MathSciNet  MATH  Google Scholar 

  88. E. Magenes and C. Verdi, Time discretization schemes for the Stefan problem in a concentrated capacity, Meccanica, 28 (1993), pp. 121–128.

    Article  MATH  Google Scholar 

  89. E. Magenes, C. Verdi, and A. Visintin, Theoretical and numerical results on the two-phase Stefan problem, SIAMJNA, 26 (1989), pp. 1425–1438.

    MathSciNet  MATH  Google Scholar 

  90. T.A. Manteuffel, An incomplete factorization technique for positive definite linear systems, Math. Comp., 34 (1980), pp. 473–497.

    Article  MathSciNet  MATH  Google Scholar 

  91. S. Mazzullo, M. Paolini, and C. Verdi, Polymer crystallization and processing: free boundary problems and their numerical approximation, Math. Engrg. Indust., 2 (1989), pp. 219–232.

    MATH  Google Scholar 

  92. S. Mazzullo, M. Paolini, and C. Verdi, Numerical simulation of thermal bone necrosis during cementation of femoral prostheses, J. Math. Biol. 29 (1991), pp. 475–494.

    Article  MATH  Google Scholar 

  93. A.M. Meirmanov, The Stefan Problem, Gruyter, Berlin, 1992.

    Book  MATH  Google Scholar 

  94. L. Modica and S. Mortola, Un esempio di Γ-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), pp. 285–299.

    MathSciNet  MATH  Google Scholar 

  95. J. Nitsche, L-convergence of finite element approximation, in Mathematical Aspects of Finite Element Method, LNM 606 (I. Galligani and E. Magenes, eds.), Springer-Verlag, Berlin, 1977, pp. 261–274.

    Chapter  Google Scholar 

  96. R.H. Nochetto, Error estimates for two-phase Stefan problems in several space variables, I: linear boundary conditions, Calcolo, 22 (1985), pp. 457–499.

    Article  MathSciNet  MATH  Google Scholar 

  97. R.H. Nochetto, A note on the approximation of free boundaries by finite element methods, RAIRO Modél. Math. Anal. Numér., 20 (1986), pp. 355–368.

    MathSciNet  MATH  Google Scholar 

  98. R.H. Nochetto, Error estimates for multidimensional singular parabolic problems, Japan J. Indust. Appl. Math., 4 (1987), pp. 111–138.

    Article  MathSciNet  MATH  Google Scholar 

  99. R.H. Nochetto, A class of non-degenerate two-phase Stefan problems in several space variables, Comm. Partial Differential Equations, 12 (1987), pp. 21–45.

    Article  MathSciNet  MATH  Google Scholar 

  100. R.H. Nochetto, A stable extrapolation method for multidimensional degenerate parabolic problems, Math. Comp., 53 (1989), pp. 455–470.

    Article  MathSciNet  MATH  Google Scholar 

  101. R.H. Nochetto, Finite element methods for parabolic free boundary problems, in Advances in Numerical Analysis, I: Nonlinear Partial Differential Equations and Dynamical Systems (W. Light ed.), Oxford Academic Press, Oxford, 1991, pp. 34–95.

    Google Scholar 

  102. R.H. Nochetto, M. Paolini, S. Rovida, and C. Verdi, Variational approximation of the geometric motion of fronts, in Motion by Mean Curvature and Related Topics (G. Buttazzo and A. Visintin, eds.), Gruyter, Berlin, 1994, pp. 124–149.

    Google Scholar 

  103. R.H. Nochetto, M. Paolini, and C. Verdi, An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part I: stability and error estimates. Supplement, Math. Comp., 57 (1991), pp. 73–108, S1–S11.

    MathSciNet  MATH  Google Scholar 

  104. R.H. Nochetto, M. Paolini, and C. Verdi, An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part II: implementation and numerical experiments, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1207–1244.

    Article  MathSciNet  MATH  Google Scholar 

  105. R.H. Nochetto, M. Paolini, and C. Verdi, Quasi-optimal mesh adaptation for two-phase Stefan problems in 2D, in Computational Mathematics and Applications, Publ. 730, IAN-CNR, Pavia, 1989, pp. 313–326.

    Google Scholar 

  106. R.H. Nochetto, M. Paolini, and C. Verdi, Towards a unified approach for the adaptive solution of evolution phase changes, in Variational and Free Boundary Problems, IMA VMA 53 (A. Friedman and J. Spruck, eds.), Springer-Verlag, New York, 1993, pp. 171–193.

    Chapter  Google Scholar 

  107. R.H. Nochetto, M. Paolini, and C. Verdi, A fully discrete adaptive nonlinear Chernoff formula, SIAM J. Numer. Anal., 30 (1993), pp. 991–1014.

    Article  MathSciNet  MATH  Google Scholar 

  108. R.H. Nochetto, M. Paolini, and C. Verdi, Continuous and semidiscrete travelling waves for a phase relaxation model, European J. Appl. Math. (to appear).

    Google Scholar 

  109. R.H. Nochetto, M. Paolini, and C. Verdi, Optimal interface error estimates for the mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) (to appear).

    Google Scholar 

  110. R.H. Nochetto, M. Paolini, and C. Verdi, Sharp error analysis for curvature dependent evolving fronts, Math. Models Methods Appl. Sci., 3 (1993), pp. 711–723.

    Article  MathSciNet  MATH  Google Scholar 

  111. R.H. Nochetto, M. Paolini, and C. Verdi, Double obstacle formulation with variable relaxation parameter for smooth geometric front evolutions: asymptotic interface error estimates, Asymptotic Anal. (to appear).

    Google Scholar 

  112. R.H. Nochetto, M. Paolini, and C. Verdi, A dynamic mesh method for curvature dependent evolving interfaces, Preprint (1994).

    Google Scholar 

  113. R.H. Nochetto and C. Verdi, Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., 25 (1988), pp. 784–814.

    Article  MathSciNet  MATH  Google Scholar 

  114. R.H. Nochetto and C. Verdi, An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation, Math. Comp., 51 (1988), pp. 27–53.

    Article  MathSciNet  MATH  Google Scholar 

  115. R.H. Nochetto and C. Verdi, The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems, Numer. Funct. Anal. Optim., 9 (1988), pp. 1177–1192.

    Article  MathSciNet  MATH  Google Scholar 

  116. R.H. Nochetto and C. Verdi, Convergence of double obstacle problems to the generalized geometric motion of fronts, SIAM J. Math. Anal. (to appear).

    Google Scholar 

  117. R.H. Nochetto and C. Verdi, Convergence past singularities for a fully discrete approximation of curvature driven interfaces, Preprint (1994).

    Google Scholar 

  118. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

    MATH  Google Scholar 

  119. S. Osher and J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  120. M. Paolini, G. Sacchi, and C. Verdi, Finite element approximation of singular parabolic problems, Internat. J. Numer. Methods Engrg., 26 (1988), pp. 1989–2007.

    Article  MathSciNet  MATH  Google Scholar 

  121. M. Paolini and C. Verdi, An automatic triangular mesh generator for planar domains, Riv. Inform., 20 (1990), pp. 251–267.

    MathSciNet  Google Scholar 

  122. M. Paolini and C. Verdi, Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter, Asymptotic Anal., 5 (1992), pp. 553–574.

    MathSciNet  MATH  Google Scholar 

  123. P. Pietra and C. Verdi, Convergence of the approximated free boundary for the multidimensional one-phase Stefan problem, Comput. Mech., 1 (1986), pp. 115–125.

    Article  MATH  Google Scholar 

  124. P.A. Raviart, The use of numerical integration in finite element methods for solving parabolic equations, in Topics in Numerical Analysis (J.J.H. Miller ed.), Academic Press, London, 1973, pp. 233–264.

    Google Scholar 

  125. J.F. Rodrigues, Variational methods in the Stefan problem, in [144], Modelling and Analysis of Phase Transition and Hysteresis Phenomena, Springer-Verlag, Berlin, to appear.

    Google Scholar 

  126. J. Rulla, Error analyses for implicit approximations to solutions to Cauchy problems, SIAM J. Numer. Anal. (to appear).

    Google Scholar 

  127. J. Rulla and N.J. Walkington, Optimal rates of convergence for degenerate parabolic problems in two dimensions, SIAM J. Numer. Anal. (to appear).

    Google Scholar 

  128. G. Savaré, Approximation and regularity of evolution variational inequalities, Rend. Acad. Naz. Sci XL 111, 17 (1993), pp. 83–111.

    MathSciNet  MATH  Google Scholar 

  129. G. Savaré. Weak solutions and maximal time regularity for abstract evolution inequalities, Preprint (1994).

    Google Scholar 

  130. J.A. Sethian, Recent numerical algorithms for hypersurfaces moving with curvature-dependent speed: Hamilton-Jacobi equations, conservation laws, J. Differential Geom., 31 (1990), pp. 131–162.

    MathSciNet  MATH  Google Scholar 

  131. H.M. Soner and P.E. Souganidis, Singularities and uniqueness of cylindrically symmetric surfaces movings by mean curvature, Comm. P(artial Differential Equations, 18 (1992), pp. 859–894.

    Article  MathSciNet  MATH  Google Scholar 

  132. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  133. M.C. Tobin, Theory of phase transition kinetics with growth site impingement, I, J. Polym. Sci. Polym. Phys. Ed., 12 (1974), pp. 394–406.

    Article  Google Scholar 

  134. M.C. Tobin, Theory of phase transition kinetics with growth site impingement, II, J. Polym. Sci. Polym. Phys. Ed., 14 (1976), pp. 2253–2257.

    Article  Google Scholar 

  135. C. Verdi, On the numerical approach to a two-phase Stefan problem with nonlinear flux, Calcolo, 22 (1985), pp. 351–381.

    Article  MathSciNet  MATH  Google Scholar 

  136. C. Verdi, Optimal error estimates for an approximation of degenerate parabolic problems, Numer. Funct. Anal. Optim., 9 (1987), pp. 657–670.

    Article  MathSciNet  MATH  Google Scholar 

  137. C. Verdi, BV regularity of the enthalpy for semidiscrete two-phase Stefan problems, Istit. Lombardo Accad. Sci. Lett. Rend A, 126 (1992), pp. 29–42.

    MathSciNet  MATH  Google Scholar 

  138. C. Verdi and A. Visintin, Numerical approximation of hysteresis problems, IMA J. Numer. Anal., 5 (1985), pp. 447–463.

    Article  MathSciNet  MATH  Google Scholar 

  139. C. Verdi and A. Visintin, Numerical analysis of the multidimensional Stefan problem with supercooling and superheating, Boll. Un. Mat. Ital. B (7), 1 (1987), pp. 795–814.

    MathSciNet  MATH  Google Scholar 

  140. C. Verdi and A. Visintin, Error estimates for a semiexplicit numerical scheme for Stefan-type problems, Numer. Math., 52 (1988), pp. 165–185.

    Article  MathSciNet  MATH  Google Scholar 

  141. C. Verdi and A. Visintin, Numerical approximation of the Preisach model for hysteresis, RAIRO Modél. Math. Anal. Numér. 23 (1989), pp. 335–356.

    MathSciNet  MATH  Google Scholar 

  142. A. Visintin, Stefan problem with phase relaxation, IMA J. Appl. Math., 34 (1985), pp. 225–245.

    Article  MathSciNet  MATH  Google Scholar 

  143. A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin, to appear.

    Google Scholar 

  144. A. Visintin, Modelling and Analysis of Phase Transition and Hysteresis Phenomena, Springer-Verlag, Berlin, to appear.

    Google Scholar 

  145. D.E. WombleA front-tracking method for multiphase free boundary problems, SIAM J. Numer. Anal., 26 (1989), pp. 380–396.

    Article  MathSciNet  MATH  Google Scholar 

  146. N. Yamada, Viscosity solutions for a system of elliptic inequalities with bilateral obstacles, Funkcial. Ekvac., 30, (1987), pp. 417–425.

    MathSciNet  MATH  Google Scholar 

  147. M. Zlamal, A finite element solution of the nonlinear heat equation, RAIRO Modél. Math. Anal. Numér., 14 (1980), pp. 203–216.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Augusto Visintin

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Verti, C. (1994). Numerical aspects of parabolic free boundary and hysteresis problems. In: Visintin, A. (eds) Phase Transitions and Hysteresis. Lecture Notes in Mathematics, vol 1584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0073398

Download citation

  • DOI: https://doi.org/10.1007/BFb0073398

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58386-8

  • Online ISBN: 978-3-540-48678-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics