Skip to main content

Combinatorial hardness proofs for polynomial evaluation

Extended abstract

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

Abstract

We exhibit a new method for showing lower bounds for the time complexity of polynomial evaluation procedures. Time, denoted by L, is measured in terms of nonscalar arithmetic operations. The time complexity function considered in this paper is L 2. In contrast with known methods for proving lower complexity bounds, our method is purely combinatorial and does not require powerful tools from algebraic or diophantine geometry.

By means of our method we are able to verify the computational hardness of new natural families of univariate polynomials for which this was impossible up to now. By computational hardness we mean that the complexity function L 2 grows linearly in the degree of the polynomials of the family we are considering.

Our method can also be applied to classical questions of transcendence proofs in number theory and geometry. A list of (old and new) formal power series is given whose transcendency can be shown easily by our method.

Work partially supported by Spanish DGCYT grant PB 96-0671-C02-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldaz M., Heintz J., Matera G., Montaña J.L., Pardo L.M.: Time-space tradeoffs in algebraic complexity theory. J. of Complexity (submitted to), 1996.

    Google Scholar 

  2. Baur W.: Simplified lower bounds for polynomials with algebraic coefficients. J. of Complexity 13(1) (1997) 38–41.

    Article  MATH  MathSciNet  Google Scholar 

  3. Belaga E.G.: Some problems involved in the computations of polynomials. Dokl. Akad. Nauk. SSSR 123 (1958) 775–777.

    MATH  MathSciNet  Google Scholar 

  4. Bochnak J., Coste M., Roy M.-F.: Géométrie Algébrique Réelle. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Vol. 12. Springer, 1987.

    Google Scholar 

  5. Borodin A., Munro I.: The Computational Complexity of Algebraic and Numeric Problems. American Elsevier, 1975.

    Google Scholar 

  6. Bürgisser P., Clausen M., Shokrollahi A.: Algebraic Complexity Theory. A Series of comprehensive studies in mathematics 315. Springer, 1997.

    Google Scholar 

  7. Fitchas N., Galligo A., Morgenstern J.: Precise sequential and parallel complexity bounds for the quantifier elimination over algebraically closed fields. J. Pure Appl. Algebra 67 (1990) 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  8. von zur Gathen J.: Algebraic complexity theory. Ann. Review of Comp. Sci. 3 (1988) 317–347.

    Article  Google Scholar 

  9. von zur Gahen J., Strassen V.: Some polynomials that are hard to compute. Theoret. Comp. Sc. 11(3) (1980) 331–335.

    Article  Google Scholar 

  10. Heintz J.: On the computational complexity of polynomials and bilinear mappings. A survey. L. Huget and A. Poli, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lectures notes in Computer Science 356, 269–300. Springer, 1989.

    Google Scholar 

  11. Heintz J., Morgenstern J.: On the intrinsic complexity of elimination theory. J. of Complexity 9(4) (1993) 471–498.

    Article  MATH  MathSciNet  Google Scholar 

  12. Heintz J., Schnorr C.P.: Testing polynomials which are easy to compute. Logic and Algorithmic: An International Symposium held in honor of Ernst Specker. l'Enseignement de Mathématiques 30, 237–254. Genève, 1982.

    Google Scholar 

  13. Heintz J., Sieveking M.: Lower bounds for polynomials with algebraic coefficients. Theoret. Comp. Sc. 11(3) (1980) 321–330.

    Article  MATH  MathSciNet  Google Scholar 

  14. Krick T., Pardo L.M.: A computational method for diophantine approximation. L. González-Vega and T. Recio, editors, Algorithms in Algebraic Geometry and Applications. Proceedings of MEGA'94, Progress in Mathematics 143, 193–254. Birkhäuser, 1996.

    Google Scholar 

  15. Kung H.T., Traub J.F.: All algebraic functions can be computed fast. J. of the ACM 25(2) (1978) 245–260.

    Article  MATH  MathSciNet  Google Scholar 

  16. Motzkin T.S.: Evaluation of polynomials and evaluation of rational functions. Bull. Amer. Math. Soc. 61 (1955) 163.

    Google Scholar 

  17. Pardo L.M: How lower and upper complexity bounds meet in elimination theory. G. Cohen, M. Giusti and T. Mora, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Proceedings AAECC-11, Lecture Notes in Computer Science 948, 33–69. Springer, 1995.

    Google Scholar 

  18. Paterson M.S., Stockmeyer L.J.: On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. of Computing 2(1) (1973) 60–66.

    Article  MATH  MathSciNet  Google Scholar 

  19. Puddu S., Sabia J.: An effective algorithm for quantifier elimination over algebraically closed fields using straight-line programs. J. of Pure Appl. Algebra (to appear).

    Google Scholar 

  20. Schnorr C.P.: Improved lower bounds on the number of multiplications/divisions which are necessary to evaluate polynomials. Theoret. Comp. Sc. 7(3) (1978) 251–261.

    Article  MATH  MathSciNet  Google Scholar 

  21. Shoup V., Smolensky R.: Lower bounds for polynomial evaluation and interpolation problems. Proceedings of the 32nd Annual Symposium FOCS, 378-383. IEEE Computer Society Press, 1991.

    Google Scholar 

  22. Stoss H.J.: On the representation of rational functions of bounded complexity. Theoret. Comp. Sc. 64(1) (1989) 1–13.

    Article  MathSciNet  Google Scholar 

  23. Strassen V.: Polynomials with rational coefficients which are hard to compute. SIAM J. of Computing 3 (1974) 128–149.

    Article  MATH  MathSciNet  Google Scholar 

  24. Strassen V.: Algebraic Complexity Theory. Handbook of Theoretical Computer Science, Vol. A, Chap. 11, 635–672. Elsevier Science Publishers, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aldaz, M., Heintz, J., Matera, G., Montaña, J.L., Pardo, L.M. (1998). Combinatorial hardness proofs for polynomial evaluation. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055765

Download citation

  • DOI: https://doi.org/10.1007/BFb0055765

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics