Skip to main content

Positive varieties and infinite words

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1380))

Abstract

Carrying on the work of Arnold, Pécuchet and Perrin, Wilke has obtained a counterpart of Eilenberg's variety theorem for finite and infinite words. In this paper, we extend this theory for classes of languages that are closed under union and intersection, but not necessarily under complement. As an example, we give a purely algebraic characterization of various classes of recognizable sets defined by topological properties (open, closed, F and F δ ) or by combinatorial properties

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arnold, A syntactic congruence for rational Ω-languages, Theoret. Comput. Sci. 39, (1985) 333–335.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik und Grundl. Math. 6, (1960) 66–92.

    MATH  Google Scholar 

  3. J. R. Büchi, On a decision method in restricted second-order arithmetic, in Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy of Science, Stanford Univ. Press, Standford, (1962) 1–11.

    Google Scholar 

  4. S. Eilenberg, Automata, languages and machines, Vol. B, Academic Press, New York (1976).

    Google Scholar 

  5. R. McNaughton, Testing and generating infinite sequences by a finite automaton Information and Control 9, (1966) 521–530.

    MATH  MathSciNet  Google Scholar 

  6. D. Muller, Infinite sequences and finite machines, in Switching Theory and Logical Design, Proc. Fourth Annual Symp. IEEE, (1963) 3–16.

    Google Scholar 

  7. J.-P. Pécuchet, Variétés de semigroupes et mots infinis, in B. Monien and G. Vidal-Naquet eds., STACS 86, Lecture Notes in Computer Science 210, Springer, (1986) 180–191.

    Google Scholar 

  8. J.-P. Pécuchet, étude syntaxique des parties reconnaissables de mots infinis, in Proc. 13th ICALP, (L. Kott ed.) Lecture Notes in Computer Science 226, Springer, Berlin, (1986) 294–303.

    Google Scholar 

  9. D. Perrin, Variétés de semigroupes et mots infinis, C.R. Acad. Sci. Paris 295, (1982) 595–598.

    MATH  MathSciNet  Google Scholar 

  10. D. Perrin, Recent results on automata and infinite words, in Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 176, Springer, Berlin, (1984) 134–148.

    Google Scholar 

  11. D. Perrin, An introduction to automata on infinite words, in Automata on Infinite Words (Nivat, M. ed.), Lecture Notes in Computer Science 192, Springer, Berlin, (1984) 2–17.

    Google Scholar 

  12. D. Perrin and J.-é. Pin, First order logic and star-free sets, J. Comput. System Sci. 32, (1986), 393–406.

    Article  MathSciNet  Google Scholar 

  13. D. Perrin and J.-é. Pin, Semigroups and automata on infinite words, in NATO Advanced Study Institute Semigroups, Formal Languages and Groups, J. Fountain (ed.), Kluwer academic publishers, (1995), 49–72.

    Google Scholar 

  14. D. Perrin and J.-é. Pin, Mots infinis, to appear (LITP report 97-04), (1997). Accessible on the web: http://liafa.jussieu.fr/~jep.

    Google Scholar 

  15. J.-é. Pin, Variétés de langages formels, Masson, Paris (1984); English translation: Varieties of formal languages, Plenum, New-York (1986).

    Google Scholar 

  16. J.-é. Pin, Finite semigroups and recognizable languages: an introduction, in NATO Advanced Study Institute Semigroups, Formal Languages and Groups, J. Fountain (ed.), Kluwer academic publishers, (1995), 1–32.

    Google Scholar 

  17. J.-é. Pin, A variety theorem without complementation, Russian Mathematics (Iz. VUZ) 39 (1995), 80–90.

    MATH  MathSciNet  Google Scholar 

  18. J.-é. Pin, A negative answer to a question of Wilke on varieties of Ω-languages, Information Processing Letters, (1995), 197–200.

    Google Scholar 

  19. J.-é. Pin, Logic, Semigroups and Automata on Words, Annals of Mathematics and Artificial Intelligence 16 (1996), 343–384.

    Article  MATH  MathSciNet  Google Scholar 

  20. J.-é. Pin, Syntactic semigroups, in Handbook of language theory, G. Rozenberg and A. Salomaa (éd.), Springer Verlag, 1997.

    Google Scholar 

  21. J.-é. Pin and P. Weil, A Reiterman theorem for pseudovarieties of finite first-order structures, Algebra Universalis 35 (1996), 577–595.

    Article  MathSciNet  Google Scholar 

  22. J.-é. Pin and P. Weil, Polynomial closure and unambiguous product, Theory Comput. Systems 30 (1997), 1–39.

    Article  MathSciNet  Google Scholar 

  23. I. Simon, Piecewise testable events, Proc. 2nd GI Conf., Lecture Notes in Computer Science 33, Springer, Berlin, (1975) 214–222.

    Google Scholar 

  24. W. Thomas, Automata on infinite objects, in Handbook of Theoretical Computer Science, vol B, Formal models and semantics, Elsevier, (1990) 135–191.

    Google Scholar 

  25. T. Wilke, An Eilenberg theorem for ∞-languages, in Automata, Languages and Programming, Lecture Notes in Computer Science 510, Springer Verlag, Berlin, Heidelberg, New York, (1991), 588–599.

    Google Scholar 

  26. T. Wilke, An algebraic theory for regular languages of finite and infinite words, Int. J. Alg. Comput. 3, (1993), 447–489.

    Article  MATH  MathSciNet  Google Scholar 

  27. T. Wilke, Locally threshold testable languages of infinite words, in STACS 93, P. Enjalbert, A. Finkel, K.W. Wagner (Eds.), Lecture Notes in Computer Science 665, Springer, Berlin, (1993) 607–616.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cláudio L. Lucchesi Arnaldo V. Moura

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pin, J.é. (1998). Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V. (eds) LATIN'98: Theoretical Informatics. LATIN 1998. Lecture Notes in Computer Science, vol 1380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054312

Download citation

  • DOI: https://doi.org/10.1007/BFb0054312

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64275-6

  • Online ISBN: 978-3-540-69715-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics