Skip to main content

Geometry of nonholonomic systems

  • Chapter
  • First Online:
Robot Motion Planning and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 229))

Abstract

Nonholonomic motion planning is best understood with some knowledge of the underlying geometry. In this chapter, we first introduce in Section 1 the basic notions of the geometry associated to control systems without drift. In the following sections, we present a detailed study of an example, the car with n trailers, then some general results on polynomial systems, which can be used to bound the complexity of the decision problem and of the motion planning for these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Agrachev and R. V. Gamkrelidze, “The exponential representation of flows and the chronological calculus,” Mat. Sbornik (N.S.), 107 (149), 467–532, 639, 1978. English transl.: Math. USSR Sbornik, 35, 727–785, 1979.

    Google Scholar 

  2. A. Bellaïche, “The tangent space in sub-Riemannian Geometry,” in Sub-Riemannian Geometry, A. Bellaïche and J.-J. Risler Ed., Progress in Mathematics, Birkhäuser, 1996.

    Google Scholar 

  3. A. Bellaïche, J.-P. Laumond and J. Jacobs, “Controllability of car-like robots and complexity of the motion planning problem,” in International Symposium on Intelligent Robotics, 322–337, Bangalore, India, 1991.

    Google Scholar 

  4. A. Bellaïche, J.-P. Laumond and J.-J. Risler, “Nilpotent infinitesimal approximations to a control Lie algebra,” in Proceedings of the IFAC Nonlinear Control Systems Design Symposium, 174–181, Bordeaux, France, June 1992.

    Google Scholar 

  5. R. W. Brockett, “Control theory and singular Riemannian geometry,” in New directions in applied mathematics, P. J. Hilton and G. J. Young Ed., Springer-Verlag, 1982.

    Google Scholar 

  6. J. F. Canny, The complexity of robot motion planning, MIT Press, 1998.

    Google Scholar 

  7. W. L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung,” Math. Ann., 117, 98–115, 1940.

    Google Scholar 

  8. M. Fliess, J. Levine, P. Martin and P. Rouchon, “On differential flat nonlinear systems,” in Proceedings of the IFAC Non linear Control Systems Design Symposium, 408–412, Bordeaux, France, 1992.

    Google Scholar 

  9. A. Gabrielov, F. Jean and J.-J. Risler, Multiplicity of Polynomials on Trajectories of Polynomials Vector Fields in C 3, Preprint, Institut de Mathématiques, Univ. Paris VI, 1997.

    Google Scholar 

  10. A. Gabrielov, J.-M. Lion and R. Moussu, “Ordre de contact de courbes intégrales du plan,” CR Acad. Sci. Paris, 319, 219–221, 1994.

    Google Scholar 

  11. A. Gabrielov, “Multiplicities of Zeroes of Polynomials on Trajectories of Polynomial Vector Fields and Bounds on Degree of Nonholonomy,” Mathematical Research Letters, 2, 437–451, 1995.

    Google Scholar 

  12. A. Gabrielov, Multiplicity of a zero of an analytic function on a trajectory of a vector field, Preprint, Purdue University, March 1997.

    Google Scholar 

  13. C. Godbillon, Géométrie différentielle et Mécanique analytique, Hermann, Paris, 1969.

    Google Scholar 

  14. N. Goodman, Nilpotent Lie groups, Springer Lecture Notes in Mathematics, 562, 1976.

    Google Scholar 

  15. S. Grigoriev, “Complexity of deciding Tarski algebra,” J. Symb. Comp., 5, 37–64, 1988.

    Google Scholar 

  16. M. Gromov, “Carnot-Carathéodory spaces seen from within,” in Sub-Riemannian Geometry, A. Bellaïche and J.-J. Risler Ed., Progress in Mathematics, Birkhäuser, 1996.

    Google Scholar 

  17. J. Heinz, M.-F. Roy and P. Solerno, “Sur la complexité du principe de Tarski-Seidenberg,” Bull. Soc. Math. Fr., 118, 101–126, 1990.

    Google Scholar 

  18. H. Hermes, “Nilpotent and high-order approximations of vector field systems,” SIAM Review, 33 (2), 238–264.

    Google Scholar 

  19. F. Jean, “The car with N trailers: characterization of the singular configurations,” ESAIM: COCV, http://www.emath.fr/cocv/, 1, 241–266, 1996.

    Google Scholar 

  20. J.-P. Laumond, “Singularities and Topological Aspects in Nonholonomic Motion Planning,” in Nonholonomic Motion Planning, 149–199, Z. Li and J. Canny Ed., Klumer Academic Publishers, 1993.

    Google Scholar 

  21. J.-P. Laumond, “Controllability of a multibody mobile robot,” in Proceedings of the International Conference on Advanced robotics and Automation, 1033–1038, Pisa, Italy, 1991.

    Google Scholar 

  22. J.-P. Laumond, P. E. Jacobs, M. Taix and R. M. Murray, “A motion planner for nonholonomic mobile robot,” in LAAS-CNRS Report, Oct. 1992.

    Google Scholar 

  23. J.-P. Laumond and J.-J. Risler, “Nonholonomics systems: Controllability and complexity,” Theoretical Computer Science, 157, 101–114, 1996.

    Google Scholar 

  24. F. Luca and J.-J. Risler, “The maximum of the degree of nonholonomy for the car with n trailers,” 4th IFAC Symposium on Robot Control, 165–170, Capri, 1994.

    Google Scholar 

  25. R. M. Murray and S. S. Sastry, “Nonholonomic Motion Planning: Steering using sinusoids,” IEEE Transactions on Automatic Control, 38 (5), 700–716, May 1993.

    Google Scholar 

  26. A. Nagel, E. M. Stein and S. Wainger, “Metrics defined by vector fields,” Acta Math., 155, 103–147, 1985.

    Google Scholar 

  27. Y. V. Nesterenko, “Estimates for the number of zeros of certain functions,” New Advances in transcendance Theor, 263–269, A. Baker Ed., Cambridge, 1988.

    Google Scholar 

  28. P. K. Rashevsky, “Any two points of a totally nonholonomic space may be connected by an admissible line,” Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 2, 83–94, 1938 (Russian).

    Google Scholar 

  29. J.-J. Risler, “A bound for the degree of nonholonomy in the plane,” Theoretical Computer Science, 157, 129–136, 1996.

    Google Scholar 

  30. J. T. Schwartz and M. Sharir, “On the ‘Piano Movers’ problem II: general techniques for computing topological properties of real algebraic manifolds,” Advances in Applied Mathematics, 4, 298–351, 1983.

    Google Scholar 

  31. A. Seidenberg, “On the length of Hilbert ascending chain,” Proc. Amer. Math. Soc., 29, 443–450, 1971.

    Google Scholar 

  32. E. Sontag, “Some complexity questions regarding controllability,” Proc. of the 27-th IEEE Conf. on Decision and Control, 1326–1329, Austin, 1988.

    Google Scholar 

  33. O. J. Sørdalen, “Conversion of the kinematics of a car with n trailers into a chain from,” IEEE International Conference on Robotics and Automation, 1993.

    Google Scholar 

  34. O. J. Sørdalen, “On the global degree of non holonomy of a car with n trailers,” 4th IFAC Symposium on Robot Control, 343–348, Capri, 1994.

    Google Scholar 

  35. P. Stefan, “Accessible sets, orbits, and foliations with singularities,” Proc. London Math. Soc., 29 (3), 699–713, 1974.

    Google Scholar 

  36. H. J. Sussmann, “Orbits of families of vector fields and integrability of distributions,” Trans. Amer. Math. Soc., 180, 171–188, 1973.

    Google Scholar 

  37. H. J. Sussmann, “Lie brackets, Real Analyticity and Geometric control,” in Differential Geometric Control Theory, Brockett, Millman, Sussmann Ed., Birkäuser, 1–116, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. -P. Laumond

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bellaïche, A., Jean, F., Risler, J.J. (1998). Geometry of nonholonomic systems. In: Laumond, J.P. (eds) Robot Motion Planning and Control. Lecture Notes in Control and Information Sciences, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036071

Download citation

  • DOI: https://doi.org/10.1007/BFb0036071

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76219-5

  • Online ISBN: 978-3-540-40917-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics