Skip to main content

Scaling behavior of the evolution strategy when evolving neuronal control architectures for autonomous agents

  • Evolutionary Methods for Modeling and Training
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1213))

Abstract

This paper presents the application of the evolution strategy to the evolution of different controllers for autonomous agents. Autonomous agents are embodied systems that behave in the real world without any human control. Most of the pertinent research has employed genetic algorithms. Epistatic interaction between the parameters of the fitness function is a well-known problem, since it drastically slows down genetic algorithms. The evolution strategy, however, performs rotationally invariant, because it applies gaussian mutations with a probability p m=1 to all parameters per offspring. This paper investigates the scaling behavior of the evolution strategy when evolving different neuronal control architectures for autonomous agents. The results demonstrate that the evolution strategy dramatically accelerates the development process, which is of great practical relevance, since the fitness evaluation of each controller takes approximately one minute on a physical robot.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bäck and H.-P. Schwefel. An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation 1(1):1–23, 1993.

    Google Scholar 

  2. V. Braitenberg. VEHICLES, Experiments in synthetic psychology. MIT Press, Cambridge, MA, 1984.

    Google Scholar 

  3. R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation. 2:14–23, 1986.

    Google Scholar 

  4. D. Cliff, P. Husbands, and I. Harvey. Evolving Visually Guided Robots. In: J.-A. Meyer, H.L. Roitblat, and S.W. Wilson, eds., From Animals to Animats II: Proceedings of the Third International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA, 374–383, 1992.

    Google Scholar 

  5. D. Floreano, and F. Mondada. Evolution of Homing Navigation in a Real Mobile Robot. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26(3):396–407, 1996.

    Google Scholar 

  6. D. Floreano, and F. Mondada. Evolution of Plastic Neurocontrollers for Situated Agents, in P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S.W. Wilson, eds., From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA, 402–410, 1996.

    Google Scholar 

  7. D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Learning Intelligence. IEEE Press, Piscataway, NJ, 1995.

    Google Scholar 

  8. L.J. Fogel. “Autonomous Automata”. Industrial Research. 4:14–19, 1962.

    Google Scholar 

  9. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, 1989.

    Google Scholar 

  10. Khepera Users Manual. Laboratoire de microinformatique, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland.

    Google Scholar 

  11. P. Maes, ed. Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back. MIT Press, Cambridge, MA, 1991.

    Google Scholar 

  12. J. Moody, and C. Darken. Learning with Localized Receptive Fields. In: D. Touretzky, G. Hinton, and T. Sejnowski, eds., Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann Publishers, San Mateo, CA, 133–143, 1989.

    Google Scholar 

  13. S. Nolfi, and D. Parisi. Learning to Adapt to Changing Environments in Evolving Neural Networks. Technical Report 95-15, Institute of Psychology, National Research Council, Rome, Italy., 1995.

    Google Scholar 

  14. R. Pfeifer. Building “Fungus Eaters”: design principles of autonomous agents. In: P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S.W. Wilson, eds., From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, MIT Press, Cambridge, MA, 3–12, 1996.

    Google Scholar 

  15. I. Rechenberg. Evolutionsstrategie. Frommann-Holzboog, Stuttgart, 1994.

    Google Scholar 

  16. R. Salomon. Performance Degradation of Genetic Algorithms under Coordinate Rotation. In: L.J. Fogel, P.J. Angeline, T. Bäck, eds., Proceedings of the Fifth Annual Conference on Evolutionary Programming V, MIT Press, Cambridge, MA, 1996.

    Google Scholar 

  17. R. Salomon. Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms. BioSystems. 39(3): 263–278, 1996.

    Article  PubMed  Google Scholar 

  18. H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, NY, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter J. Angeline Robert G. Reynolds John R. McDonnell Russ Eberhart

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salomon, R. (1997). Scaling behavior of the evolution strategy when evolving neuronal control architectures for autonomous agents. In: Angeline, P.J., Reynolds, R.G., McDonnell, J.R., Eberhart, R. (eds) Evolutionary Programming VI. EP 1997. Lecture Notes in Computer Science, vol 1213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0014800

Download citation

  • DOI: https://doi.org/10.1007/BFb0014800

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62788-3

  • Online ISBN: 978-3-540-68518-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics