Skip to main content
Log in

Fungicide resistance and genetic diversity of Botrytis cinerea isolates from a vineyard in Germany

Fungizidresistenz und genetische Diversität von Botrytis-cinerea-Isolaten eines deutschen Weinbergs

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

To evaluate the genetic diversity and the possibility of changes in the population of the grey mould fungus in a single vineyard, a total of 209 Botrytis cinerea isolates were collected from grapevine tissues in spring and autumn of 2004. The isolates revealed low frequencies of resistance against the fungicides fenhexamid (1.9%), fludioxonil (0%), carbendazim (3.4%), cyprodinil (3.8%) and tolylfluanid (0%). Two isolates belonged to the genetically isolated, fenhexamid-resistant B. cinerea group I. Two other isolates showed reduced sensitivities against all tested fungicides, indicating a multi-drug resistance mechanism. The majority of isolates (62.7%) harboured the transposable elements boty and flipper (transposa group), while smaller populations contained only boty (23.5%) or neither boty nor flipper (14.4%; vacuma group). Genotypic characterisation of the isolates with different molecular markers revealed a high degree of genetic diversity of the population, with most of the fungal isolates being different haplotypes. Spring and autumn populations were different, but did not show significant differences in their fungicide resistance patterns or in the distribution of transposa and vacuma isolates. Taken together, the study revealed a great diversity of genotypes in a chemically treated vineyard, but no evidence for large-scale fungicide resistance or seasonal changes in the grey mould population.

Zusammenfassung

Um die genetische Variabilität und mögliche Änderungen in der Population des Graufäuleerregers zu überprüfen, wurden im Frühjahr und Herbst 2004 aus einem Weinberg 209 Botrytis cinerea Isolate von Rebenpflanzen gesammelt. Die Population zeigte nur geringe Häufigkeit an Resistenz gegen Fenhexamid (1,9%), Fludioxonil (0%), Carbendazim (3,4%), Cyprodinil (3,8%) oder Tolylfluanid (0%). Zwei Isolate gehörten zur genetisch isolierten, Fenhexamid-resistenten Subpopulation I. Zwei weitere Isolate zeigten eine verringerte Sensitivität gegenüber allen getesteten Fungiziden. Der Großteil der Isolate enthielt die Transposons boty und flipper (62,7%; transposa Population), 23,5% der Isolate enthielten nur boty und 14,4% enthielten keines der beiden Transposons (vacuma Subpopulation). Eine mit molekularen Markern durchgeführte Analyse zeigte eine hohe genetische Diversität im untersuchten Weinberg, wobei sich fast alle Isolate auf unterschiedliche Haplotypen zurückführen ließen. Die Frühjahrs- und Herbstpopulationen waren unterschiedlich, zeigten jedoch keine signifikanten Unterschiede im Muster der Fungizidresistenz oder der Verteilung der Transposons. Zusammenfassend zeigte die Studie eine hohe genetische Diversität in einem konventionell genutzten Weinberg, ohne Hinweise auf eine Entwicklung von Fungizidresistenz oder Veränderung der Population innerhalb einer Vegetationsperiode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Baroffio, C.A., W. Siegfried, U.-W. Hilber, 2003: Long-term monitoring for resistance of Botryotinia fuckeliana to anilinopyrimidine, phenylpyrrole, and hydroxyanalide fungicides in Switzerland. Plant Dis. 87, 662–666.

    Article  CAS  Google Scholar 

  • Chapeland, F., R. Fritz, C. Lanen, M. Gredt, P. Leroux, 1999: Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana). Pestic. Biochem. Physiol. 64, 85–100.

    Article  CAS  Google Scholar 

  • Coley-Smith, J.R., K. Verhoeff, W.R. Jarvis, 1980: The Biology of Botrytis. Academic Press, London.

    Google Scholar 

  • De Waard, M.A., A.C. Andrade, K. Hayashi, H.J. Schoonbeek, I. Stergiopoulos, L.H. Zwiers, 2006: Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Man. Sci. 62, 195–207.

    Article  Google Scholar 

  • Doehlemann, G., P. Berndt, M. Hahn, 2006: Different signalling pathways involving a Gα protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol. Microbiol. 59, 821–835.

    Article  CAS  PubMed  Google Scholar 

  • Elad, Y., H. Yunis, T. Katan, 1992: Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathol. 41, 41–46.

    Article  CAS  Google Scholar 

  • Fournier, E., T. Giraud, A. Loiseau, D. Vautrin, A. Estoup, M. Solignac, J.M. Cornuet, Y. Brygoo, 2002: Characterisation of nine polymorphic microsatellite loci in the fungus Botrytis cinerea (Ascomycota). Mol. Ecol. Notes 2, 253–255.

    Article  CAS  Google Scholar 

  • Fournier, E., C. Levis, D. Fortini, P. Leroux, T. Giraud, Y. Brygoo, 2003: Characterisation of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus, and its use as a population marker. Mycologia 95, 251–261.

    Article  CAS  PubMed  Google Scholar 

  • Fournier, E., T. Giraud, C. Albertini, Y. Brygoo, 2005: Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia 97, 1251–1267.

    Article  CAS  PubMed  Google Scholar 

  • Giraud, T., D. Fortini, C. Levis, P. Leroux, Y. Brygoo, 1997: RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Mol. Biol. Evol. 14, 1177–1185.

    Article  CAS  PubMed  Google Scholar 

  • Giraud, T., D. Fortini, C. Levis, C. Lamarque, P. Leroux, K. Lobuglio, Y. Brygoo, 1999: Two sibling species of the Botrytis cinerea complex, transposa and vacuma, are found in sympatry on numerous host plants. Phytopathology 89, 967–973.

    Article  CAS  PubMed  Google Scholar 

  • Kerssies, A., 1990: A selective medium for Botrytis cinerea to be used in a spore trap. Neth. J. Plant Pathol. 96, 247–250.

    Article  Google Scholar 

  • Leroux, P., A. Descotes, 1996: Resistance of Botrytis cinerea to fungicides and strategies for its control in the Champagne vineyards. Proc. Br. Crop Prot. Pests Dis. 1, 131–136.

    Google Scholar 

  • Leroux, P., F. Chapeland, D. Desbrosses, M. Gredt, 1999: Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Prot. 18, 687–697.

    Article  CAS  Google Scholar 

  • Leroux, P., R. Fritz, D. Debieu, C. Albertini, C. Lanen, J. Bach, M. Gerdt, F. Chapeland, 2002: Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag. Sci. 58, 876–888.

    Article  CAS  PubMed  Google Scholar 

  • Leroux, P., 2004: Chemical control of Botrytis and its resistance to chemical fungicides. In: Y. Elad, B. Williamsen, P. Tudzynski, N. Delen (eds.): Botrytis: Biology, Pathology and Control, pp. 195–222. Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Martinez, F., D. Blancard, P. Lecomte, C. Levis, B. Dubos, M. Fermaud, 2003: Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. Eur. J. Plant Pathol. 109, 479–488.

    Article  Google Scholar 

  • Martinez, F., B. Dubos, M. Fermaud, 2005: The role of saprotrophy and virulence in the population dynamics of Botrytis cinerea in vineyards. Phytopathology 95, 692–700.

    Article  PubMed  Google Scholar 

  • Möller, E.M., G. Bahnweg, H. Sandermann, H.H. Geiger, 1992: A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucl. Acids Res. 20, 6115–6116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyano, C., C. Alfonso, J. Gallego, R. Raposo, P. Melgarejo, 2003: Comparison of RAPD and AFLP marker analysis as a means to study the genetic structure of Botrytis cinerea populations. Eur. J. Plant Pathol. 109, 515–522.

    Article  CAS  Google Scholar 

  • Moyano, C., V. Gomez, P. Melgarejo, 2004: Resistance to pyrimethanil and other fugicides in Botrytis cinerea populations collected on vegetable crops in Spain. J. Phytopathol. 152, 484–490.

    Article  CAS  Google Scholar 

  • Munoz, G., P. Hinrichsen, Y. Brygoo, T. Giraud, 2002: Genetic characterisation of Botrytis cinerea populations in Chile. Mycol. Res. 106, 594–601.

    Article  CAS  Google Scholar 

  • Pappas, A.C., 1997: Evolution of fungicide resistance in Botrytis cinerea in protected crops in Greece. Crop Prot. 16, 257–263.

    Article  CAS  Google Scholar 

  • Rui, O., M. Hahn, 2007: The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol. Plant Pathol. 8, 173–184.

    Article  CAS  PubMed  Google Scholar 

  • Topolovec-Pintarić, S., B. Cvjetković, 2003: In vitro sensitivity of Botrytis cinerea Pers.: Fr. to pyrimethanil and cyprodinil in some Croatian vineyards. J. Plant Dis. Protect. 110, 54–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kretschmer, M., Hahn, M. Fungicide resistance and genetic diversity of Botrytis cinerea isolates from a vineyard in Germany. J Plant Dis Prot 115, 214–219 (2008). https://doi.org/10.1007/BF03356266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356266

Key words

Stichwörter

Navigation