Skip to main content
Log in

Heavy metals removal from synthetic wastewater by a novel nano-size composite adsorbent

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The effects of varying operating conditions on metals removal from aqueous solution using a novel nano-size composite adsorbent are reported in this paper. Characterization of the composite adsorbent material showed successful production of carbon nanotubes on granular activated carbon using 1 % nickel as catalyst. In the laboratory adsorption experiment, initial mixed metals concentration of 2.0 mg/L Cu2+, 1.5 mg/L Pb2+ and 0.8 mg/L Ni2+ were synthesized based on metals concentration from samples collected from a semiconductor industry effluent. The effects of operation conditions on metals removal using composite adsorbent were investigated. Experimental conditions resulting in optimal metals adsorption were observed at pH 5, 1 g/L dosage and 60 min contact time. It was noted that the percentage of metals removal at the equilibrium condition varied for each metal, with lead recording 99 %, copper 61 % and nickel 20 %, giving metal affinity trend of Pb2+ > Cu2+ > Ni2+ on the adsorbent. Langmuir’s adsorption isotherm model gave a higher R2 value of 0.93, 0.89 and 0.986 for copper, nickel and lead, respectively, over that of Freundlich model during the adsorption process of the three metals in matrix solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya, J.; Sahu, J. N.; Mohanty, C. R.; Meikap, B. C., (2009). Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. J. Chem. Eng., 149, 249–262 (14 pages).

    Article  CAS  Google Scholar 

  • APHA; AWWA; WEF, (2005). Standard methods for the examination of water and wastewater. 21st edition. American Public Health Association, American Water Works Association and the Water Environment Federation. Washington DC., USA.

    Google Scholar 

  • Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M., (2010). Effect of fertilizer application on soil heavy metal concentration. Environ. Monitor. Assess., 160(1–4), 83–89 (7 pages).

    Article  CAS  Google Scholar 

  • Babel, S.; Kurniawan, T. A., (2004). Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan.Chemosphere, 54(7), 951–967 (17 pages).

    Article  CAS  Google Scholar 

  • Bansal, R. C.; Goyal, M., (2005). Activated Carbon Adsorption. London, Taylor and Francis Group, 351–353 (3 pages).

    Book  Google Scholar 

  • Bong, K. P.; Seung, H. S.; Young, J. Y., (2004). Selective Biosorption of Mixed Heavy Metal Ions using Polysaccharides. Korean J. Chem. Eng., 21(6), 1168–1172 (5 pages).

    Article  Google Scholar 

  • Chai-Chih, C.; Wei-Long, L.; Wen-Jauh, C.; Jin-Hua, H., (2008). Temperature and substrate dependence of structure and growth mechanism of carbon nanofiber. Appl. Surf. Sci., 254, 4681–4687 (7 pages).

    Article  Google Scholar 

  • Chantawong, V.; Harvey, N. W.; Bashkin, V. N., (2003). Comparison of Heavy Metals Adsorption by Thai Kaolin and Ballclay. Water Air Soil Poll., 148, 111–125 (15 pages).

    Article  CAS  Google Scholar 

  • Chen, J.; Yiacoumi, S.; Blaydes, T. G., (1996). Equilibrium and kinetic studies of copper adsorption by activated carbon. Sep. Tech., 6, 33–146 (114 pages).

    Article  CAS  Google Scholar 

  • Chen, J. P.; Wang, X., (2002). Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns. Sep. Purif. Tech., 19, 157–167 (10 pages).

    Article  Google Scholar 

  • Corapcioglu, M. O.; Huang, C. P., (1987). The adsorption of heavy metals onto hydrous activated carbon.Water Res., 21(9), 1031–1044 (14 pages).

    Article  CAS  Google Scholar 

  • Department of Environment-DOE., (1979). Environmental Quality (Sewage and industrial effluents) Regulations 1978, In: Environmental Quality Act 1974. E-publishing Lawnet, Malaysia (34 pages).

  • Edwin, V. A., (2008). Surface Modification of Activated Carbon for enhancement of Nickel (II) adsorption. E-J. Chem., 5(4), 814–819 (5 pages).

    Article  Google Scholar 

  • Freundlich, H.; Hatfield, H., (1926). Colloid and Capillary Chemistry. Methuen and Co. Ltd., London.

    Google Scholar 

  • Garg, V. K.; Gupta, R.; Yadav, A. B.; Kumar, R. D., (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour. Tech., 89(2), 121–124 (5 pages).

    Article  CAS  Google Scholar 

  • Georg, S.; Max, B., (2008). Adsorption of ions onto high silica volcanic glass. Appl. Rad. Iso., 66(1), 1–8 (8 pages).

    Article  Google Scholar 

  • Goel, J.; Krishna, K.; Chira, R.; Vinod, K., (2005). Removal of lead (II) by adsorption using treated granular activated carbon and column studies. J. Hazard. Mater., 125(1–3), 211–220 (9 pages).

    Article  CAS  Google Scholar 

  • Issabayeva, G.; Aroua, M. K.; Sulaiman, N. M., (2007). Continuous adsorption of lead ions in a column packed with palm shell activated carbon. J. Hazard. Mater., 155(1–2),109–113 (4 pages).

    Google Scholar 

  • Issabayeva, G.; Aroua M. K.; Sulaiman, N. M., (2006). Electrodeposition of copper and lead on palm shell activated carbon in a flow-through electrolytic cell. Desalination, 194( 1–3), 192–201 (9 pages).

    Article  CAS  Google Scholar 

  • Kabbashi, N. A.; Atieh, A. M.; Mamun, A. A.; Mirghani, M. E. S.; Alam M. Z.; Yahya N., (2009). Kinetic Adsorption of Application of Carbon Nanotubes for Pb(II) Removal from Aqueous Solution. J. Environ. Sci., 21, 539–544 (5 pages).

    Article  CAS  Google Scholar 

  • Langmuir, I., (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40(8), 1361–1403 (43 pages).

    Article  CAS  Google Scholar 

  • Li, Y. H.; Ding, J.; Luan, Z. K.; Di, Z. C.; Zhu, Y. F.; Xu, C. L; Wu, D. H.; Wei, B. Q., (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41, 2787–2792 (6 pages).

    Article  CAS  Google Scholar 

  • Li, Y. H.; Zhao, Y. M.; Hu, W. B.; Ahmad, I.; Zhu, Y. Q.; Peng, X. J.; Luan Z. K., (2007). Carbon nanotubes-the promising adsorbent in wastewater treatment. J. Phys., 61, 698–702 (5 pages).

    CAS  Google Scholar 

  • Nora, S.; Mamadou, S. D., (2005). Nanomaterials and Water Purification: Opportunities and Challenges. J. Nanoparticle Res., 7(4–5), 331–342 (12 pages).

    Google Scholar 

  • Nouri, J.; Khorasani, N.; Lorestani, B.; Karami; M.; Hassani, A. H.; Yousefi, N., (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci., 59(2), 315–323 (9 pages).

    Article  CAS  Google Scholar 

  • Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A. H.; Seif, S.; Cheraghi, M., (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ. Earth Sci., 62(3), 639–644 (6 pages).

    Article  CAS  Google Scholar 

  • Onundi, Y. B.; Mamun, A. A.; Al Khatib, M. F.; Ahmed, Y. M., (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int. J. Environ. Sci. Tech., 7(4), 751–758 (8 pages).

    CAS  Google Scholar 

  • Pingle, L.; Lefferts, L., (2006). Preparation of Carbon Nano-fiber Washcoat on Porous Silica Foam as Structured Catalyst Support. Chin. J. Chem. Eng., 14, 294–300 (7 pages).

    Article  Google Scholar 

  • Samuel, D. F.; Osman, M. A., (1987). Adsorption Processes for Water Treatment, Butterworths, U.S.A.

  • Shoushan, F.; Michael, G. C.; Nathan, R. F.; Thomas, W. T.; Alan, M. C.; Hongjie, D., (1999). Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512–514 (3 pages).

    Article  Google Scholar 

  • Vieira, R.; Ledoux, M. J.; Huu, C. P., (2004). Synthesis and characterization of carbon nanofibres with macroscopic shaping formed by catalytic decomposition of C2H6/H2 over nickel catalyst. J. Appl. Catal. A., 274, 1–8 (8 pages).

    Article  CAS  Google Scholar 

  • Zhang, Y.; Qina, Y.; Suna, X; Zhanga, J.; Jinga, C., (2008). Synthesis of carbon nanotube using cesium carbonates catalyst by chemical vapor deposition. Mater Lett., 62(21–22), 3776–3778 (3 pages).

    Article  CAS  Google Scholar 

  • Zhou, J. H.; Zhang, M. G.; Zhao, L.; Lia, P.; Zhou, X. G.; Yuana, W. K., (2009). Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol. Catal. Today, 147, 225–229 (5 pages).

    Article  Google Scholar 

  • Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3), 425–434 (10 pages).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mamun Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onundi, Y.B., Mamun, A.A., Khatib, M.F.A. et al. Heavy metals removal from synthetic wastewater by a novel nano-size composite adsorbent. Int. J. Environ. Sci. Technol. 8, 799–806 (2011). https://doi.org/10.1007/BF03326263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326263

Keywords

Navigation